

2017-18 Online Round 3

Solutions

Automated grading is available for these problems at:

wcipeg.com

For problems to this contest and past contests, visit:

woburnchallenge.com

http://wcipeg.com/
http://woburnchallenge.com/

Woburn Challenge 2017-18: Round 3 (Solutions)

2

Problem J1: Like, Comment, and Subscribe

With S limited to the interval [1, 100], there are only three possible

next milestone counts:

 If 1 ≤ S ≤ 9, then the next milestone is 10.

 If 10 ≤ S ≤ 99, then the next milestone is 100.

 If S = 100, then the next milestone is 1000.

We can use a few if-statements to determine which of the three above

cases we're in, and then subtract S from the resulting milestone count

to obtain the answer.

Problem J2: Certified Fresh

We can process the N reviews one by one, while

maintaining three pieces of information – the

number of positive reviews so far, the total number

of reviews so far, and the maximum Tomatometer

score achieved so far (all initialized to 0).

When processing a review, we can update the

positive/total review counts, compute the current

Tomatometer score, and update the maximum

Tomatometer score if it's now been surpassed. After

processing all N reviews, we can output the

maximum Tomatometer score achieved.

Problem J3/I1: Uncrackable

Let's start by iterating over the characters in the password one by one, while tallying up the counts of lowercase

letters, uppercase letters, and digits encountered. What remains is to put together an if statement which checks

whether all of the conditions described in the problem statement have been satisfied, to determine whether we

should output "Valid" or "Invalid":

 password length ≥ 8

 password length ≤ 12

 lowercase letter count ≥ 3

 uppercase letter count ≥ 2

 digit count ≥ 1

Official Solution (C++)

#include <iostream>

using namespace std;

int main() {

 int S;

 cin >> S;

 if (S < 10) {

 cout << 10 - S << endl;

 } else if (S < 100) {

 cout << 100 - S << endl;

 } else {

 cout << 1000 - S << endl;

 }

 return 0;

}

Official Solution (C++)

#include <iomanip>

#include <iostream>

using namespace std;

int N, numP = 0;

double maxS = 0;

int main() {

 cin >> N;

 for (int i = 1; i <= N; i++) {

 char R;

 cin >> R;

 if (R == 'P') {

 numP++;

 }

 maxS = max(maxS, (double)numP / i);

 }

 cout << fixed << setprecision(9) << maxS << endl;

 return 0;

}

Woburn Challenge 2017-18: Round 3 (Solutions)

3

Official Solution (C++)

#include <iostream>

#include <string>

using namespace std;

string P;

int lower = 0, upper = 0, digit = 0;

int main() {

 cin >> P;

 for (int i = 0; i < (int)P.length(); i++) {

 if (P[i] >= 'a' && P[i] <= 'z') {

 lower++;

 } else if (P[i] >= 'A' && P[i] <= 'Z') {

 upper++;

 } else {

 digit++;

 }

 }

 if (

 P.length() >= 8 &&

 P.length() <= 12 &&

 lower >= 3 &&

 upper >= 2 &&

 digit >= 1

) {

 cout << "Valid" << endl;

 } else {

 cout << "Invalid" << endl;

 }

 return 0;

}

Problem J4/I2: Meme Generator

Upon reading in the input, the trickiest part is determining

where exactly the T and B strings should be overlaid onto the

image grid, such that they end up centered as required.

Let |T| be the number of characters in T. Then, the first

character of T should replace character s = ⌊(C – |T|) / 2⌋ + 1

in the second row of the image grid (1-indexed). At that point,

we can iterate over each character Ti (for i = 1..|T|), and if Ti

isn't an underscore, we should replace character s + i – 1 in

the second row of the image grid with Ti.

The same process can be repeated to overlay B onto the

second-last row of the image grid. Following that, we can

proceed to output the entire updated image grid, one row at a

time.

Official Solution (C++)

#include <iostream>

#include <string>

using namespace std;

int R, C;

string G[105], T, B;

int main() {

 cin >> R >> C;

 for (int i = 0; i < R; i++) cin >> G[i];

 cin >> T >> B;

 int c = (C - T.length()) / 2;

 for (int i = 0; i < T.length(); i++) {

 if (T[i] != '_') {

 G[1][c + i] = T[i]; // Overlay T.

 }

 }

 c = (C - B.length()) / 2;

 for (int i = 0; i < B.length(); i++) {

 if (B[i] != '_') {

 G[R - 2][c + i] = B[i]; // Overlay B.

 }

 }

 for (int i = 0; i < R; i++) {

 cout << G[i] << endl;

 }

 return 0;

}

Woburn Challenge 2017-18: Round 3 (Solutions)

4

Problem I3/S1: Mutual Friends

Let F be the number of different possible

friendships. There's one for each unordered pair of

users, meaning that F = N(N – 1) / 2. F is small

enough (only 15 when N = 6) that it's viable to

consider each possible subset of these friendships.

There are 2
F
 such subsets, and we can consider all

of them using depth first search (recursion), or by

iterating over all bitmasks from 0 to 2
F
 – 1.

For each considered set of friendships, we can then

compute its resulting grid of mutual friend counts

by iterating over all O(N
2
) pairs of users (i, j), and

counting the number of other users k such that the

set of friendships includes both unordered pairs (i,

k) and (j, k). This process takes O(N
3
) time. If the

resulting grid of mutual friend counts exactly

matches the required grid M, then we've found a

valid set of friendships, meaning that we can

output it and stop the depth first search. If we

finish considering all 2
F
 possible sets of friendships

without coming across a valid one, then the answer

must be Impossible.

The time complexity of the algorithm described

above is O(2
F
 × N

3
).

Problem I4/S2:

GleamingProudChickenFunRun

This problem can be solved with a greedy approach,

by generally considering the clips from earliest to

latest (though note that this is not a well-defined

ordering itself, as clips have two potential

endpoints to sort by).

Let clip i be the clip which ends the earliest (the

one with the smallest B value). Assuming that we'd

like to exclude clip i from S in an effort to

minimize |S|, we'll need to include in S some clip j

which overlaps with clip i (such that Aj < Bi). If

there are multiple valid clips like this, we should

choose the one which ends the latest (the one with the largest B value), so that it's more likely to take care of

overlapping with more later-occurring clips. Note that the chosen clip j may end up being equal to clip i. Having

Official Solution (C++)

#include <iostream>

using namespace std;

int N, M[7][7];

bool F[7][7], solved;

void Rec(int i, int j) {

 if (solved) return; // Already found a solution.

 if (i > N) { // All friendships filled in.

 // Check whether this set of friendships is valid.

 int numF = 0;

 for (int i = 1; i <= N; i++) {

 for (int j = 1; j < i; j++) {

 if (F[i][j]) numF++;

 int m = 0;

 for (int k = 1; k <= N; k++) {

 if (k != i && k != j && F[i][k] && F[j][k]) {

 m++;

 }

 }

 if (m != M[i][j]) return; // It's invalid.

 }

 }

 // It's valid.

 cout << numF << endl;

 for (int i = 1; i <= N; i++) {

 for (int j = 1; j < i; j++) {

 if (F[i][j]) cout << i << " " << j << endl;

 }

 }

 solved = true;

 return;

 }

 if (j >= i) { // Time to move to the next i.

 Rec(i + 1, 1);

 return;

 }

 // Consider i and j being friends.

 F[i][j] = F[j][i] = true;

 Rec(i, j + 1);

 // Consider i and j not being friends.

 F[i][j] = F[j][i] = false;

 Rec(i, j + 1);

}

int main() {

 cin >> N;

 for (int i = 1; i <= N; i++) {

 for (int j = 1; j <= N; j++) {

 cin >> M[i][j];

 }

 }

 Rec(1, 1);

 if (!solved) {

 cout << "Impossible" << endl;

 }

 return 0;

}

Woburn Challenge 2017-18: Round 3 (Solutions)

5

included clip j in S, we can effectively ignore all other clips overlapping with it (clips k such that Ak < Bj). This

leaves us with just the set of clips k such that Ak ≥ Bj, on which the above process can be repeated – that is, we'll

next look for the clip which ends the earliest of the remaining ones. Once there are no remaining clips, we can stop,

as all clips will have been accounted for (by either having been included in S, or by being known to overlap with a

clip in S).

If we sort the clips in non-decreasing order of B (in O(N log(N)) time), the above greedy process can be

implemented naturally in O(N
2
) time. We can maintain an index i of the next clip which we'll try to omit from S,

scan through all N clips each time to find the optimal clip j to include in S, and then move i forwards to the next

earliest clip which doesn't overlap with clip j.

Improving the time complexity to O(N log(N)) is required to earn full marks, and there are several different

approaches which accomplish this. One possibility is to create a reduced list of clips in which all clips which are

contained entirely within other clips have been omitted. This new list has two useful properties: both the A values

and the B values of its clips are sorted, and any optimal clip j which we might want to include in S must still be part

of it. We can then maintain an index j into this new list, and move it forwards as necessary when searching for each

clip j to include in S, without needing to scan through the entire list each time.

Official Solution (C++)

#include <algorithm>

#include <iostream>

using namespace std;

struct Clip {

 int a, b;

 Clip() {}

 Clip(int a, int b) : a(a), b(b) {}

};

bool operator<(const Clip &A, const Clip &B) {

 return make_pair(A.b, -A.a) < make_pair(B.b, -B.a);

}

int N, N2, ans = 0;

Clip C[300000], C2[300000];

int main() {

 cin >> N;

 for (int i = 0; i < N; i++) cin >> C[i].a >> C[i].b;

 sort(C, C + N); // Sort clips by B, breaking ties by reverse A.

 // Create list of potential clips for S (ones not contained within other clips).

 N2 = 0;

 for (int i = 0; i < N; i++) {

 while (N2 > 0 && C[i].a <= C2[N2 - 1].a) N2--;

 C2[N2++] = C[i];

 }

 for (int i = 0, j = 0; i < N;) {

 // Try to exclude clip C[i] from S: find the last clip C2[j] which still overlaps with it.

 while (j + 1 < N2 && C2[j + 1].a < C[i].b) j++;

 // Include clip C2[j] in S and skip to the next clip C[i] which doesn't overlap with it.

 ans++;

 while (i < N && C[i].a < C2[j].b) i++;

 }

 cout << ans << endl;

 return 0;

}

Woburn Challenge 2017-18: Round 3 (Solutions)

6

Problem S3: Down for Maintenance

Let X be the minimum possible number of inactive intervals which the site's maintenance schedule could consist of.

Our first order of business will need to be calculating X.

Let's start by sorting all N + M observed times together in a single list (in O((N + M) log(N + M)) time). Then, X is

simply the number of occurrences of an inactive time directly preceding an active time. Keep in mind that the last

time in the list directly precedes the first time as well.

Now, the answer is Impossible if and only if I < X.

Assuming that it's possible, the site's status is known for at least each of the N + M observed times. The interesting

question is, when can the statuses of other times also be inferred? If I > X, then in fact no other statuses can be

inferred at all – with even 1 extra interval of leeway, the inactive intervals can always be shuffled around to make

any other time either active or inactive.

This leaves the case in which I = X. In this situation, each inactive interval is forced to span a certain consecutive

interval of observed inactive times, but past that, its starting and ending times may vary up to the previous/next

observed active times. The result is that all times between consecutive pairs of observed inactive times are also

inactive. Similarly, all times between consecutive pairs of observed active times are also active. However, the

statuses of times sandwiched between an observed inactive time and an observed active time remain unknown.

From there, there are several approaches to efficiently processing the queries, in O(log(N + M)) time each. For

example, we can binary search for the queried point in the list of N + M observed times. If it's present, then its

status is already known. Otherwise, if I = X, we can look at the previous and next observed times surrounding it and

see whether its status can be inferred from theirs.

Official Solution (C++)

#include <algorithm>

#include <iostream>

#include <set>

#include <string>

using namespace std;

struct Data {

 long long t;

 bool up;

 Data() {}

 Data(long long t, bool up) : t(t), up(up) {}

};

bool operator<(const Data &A, const Data &B) {

 return A.t < B.t;

}

struct Range {

 long long a, b;

 string ans;

 Range() {}

 Range(long long a, long long b, string ans) : a(a), b(b), ans(ans) {}

};

bool operator<(const Range &A, const Range &B) {

 return make_pair(A.a, A.b) < make_pair(B.a, B.b);

}

Woburn Challenge 2017-18: Round 3 (Solutions)

7

const long long MAXT = 86400000000LL;

int ND, I, N, M, K, minInactive = 0;

long long t;

Data D[200000];

set<Range> S;

void Ins(long long a, long long b, string ans) {

 if (a <= b) S.insert(Range(a, b, ans));

}

int main() {

 cin >> I >> N;

 for (int i = 0; i < N; i++) {

 cin >> t;

 D[ND++] = Data(t, true);

 Ins(t, t, "Up");

 }

 cin >> M;

 for (int i = 0; i < M; i++) {

 cin >> t;

 D[ND++] = Data(t, false);

 Ins(t, t, "Down");

 }

 sort(D, D + ND); // Sort data points by time.

 // Compute min number of inactive intervals.

 for (int i = 0; i < ND; i++) {

 if (!D[i].up && D[(i + 1) % ND].up) minInactive++;

 }

 if (I < minInactive) {

 cout << "Impossible" << endl;

 return 0;

 }

 if (I == minInactive) { // Can any inferences be made?

 // All times between 2 adjacent data points of the same type must share that type.

 for (int i = 0; i < ND; i++) {

 if (D[i].up == D[(i + 1) % ND].up) {

 string ans = D[i].up ? "Up" : "Down";

 if (i == ND - 1) {

 Ins(D[i].t + 1, MAXT - 1, ans);

 Ins(0, D[0].t - 1, ans);

 } else {

 Ins(D[i].t + 1, D[i + 1].t - 1, ans);

 }

 }

 }

 }

 // Process queries.

 cin >> K;

 for (int i = 0; i < K; i++) {

 cin >> t;

 set<Range>::iterator r = S.lower_bound(Range(t + 1, -1, ""));

 if (r == S.begin()) {

 cout << "Unknown" << endl;

 } else {

 r--;

 if (r->a <= t && t <= r->b) {

 cout << r->ans << endl;

 } else {

 cout << "Unknown" << endl;

 }

 }

 }

 return 0;

}

Woburn Challenge 2017-18: Round 3 (Solutions)

8

Problem S4: Relevant Results

The pages can be modelled as a directed graph, with an edge corresponding to each link. Let's start by breaking the

graph down into its strongly connected components (SCCs), which can be done in O(N + E) time using Kosaraju's

algorithm (where E is the total number of edges). Let's then define an "important" SCC as one with no incoming

edges from other SCCs. We can now observe that, in order to satisfy the i-th question, it's sufficient to increase the

relevancy score of a single page in each important SCC to at least Qi. Within each important SCC, each other page

in it must be reachable from the chosen page, and each unimportant SCC must be reachable from at least one

important SCC.

These insights suggest an O(MN + E) algorithm in which the M questions are answered independently. For each

question i, we can consider each important SCC. Within that SCC, we can compute the cost of raising each of its

pages' relevancy scores to at least Qi, and then take the cheapest one. The answers for all of the important SCCs can

then be added together to yield the final answer.

However, the above approach is only efficient enough when M = 1. A significantly more complex approach is

required for full marks. The idea is that each page p corresponds to a linear function fp(x) of cost required to

increase that page's relevancy score to a given score x. We'd like to construct a similar function gs for each

important SCC s, such that gs(x) = min{fp(x)} over all pages p in SCC s. The function gs corresponds to the lower

convex hull of the individual pages' linear functions, and its set of segments can be assembled in linear time after

sorting the pages by their C values (which correspond to their lines' slopes).

From there, the answer to the i-th question is equal to the sum of gs(Qi) over all important SCCs s. In order to

compute these answers efficiently for all questions, we can perform a unified line sweep over all interesting

relevancy scores in non-decreasing order, with events for scores which are being asked about as well as scores at

which convex hull segments begin. During the line sweep, we'll need to maintain both the current sum of gs

function values, and the sum of their current segments' slopes. These values can then be updated as necessary and

used to fill in the answers to questions as they're encountered.

The time complexity of the above algorithm is O((N + M) log(N + M) + E).

Official Solution (C++)

#include <algorithm>

#include <iostream>

#include <stack>

#include <vector>

using namespace std;

struct Page {

 int r, c;

 Page() {}

 Page(int r, int c) : r(r), c(c) {}

};

bool operator<(const Page &A, const Page &B) {

 return make_pair(-A.r, A.c) < make_pair(-B.r, B.c);

}

struct Event {

 long long r, deltaC, deltaT;

 int q;

 Event() {}

 Event(long long r, int q, long long deltaC, long long deltaT)

 : r(r), q(q), deltaC(deltaC), deltaT(deltaT) {}

};

Woburn Challenge 2017-18: Round 3 (Solutions)

9

bool operator<(const Event &A, const Event &B) {

 return A.r < B.r || A.r == B.r && A.q < B.q;

}

const int MAXN = 400001, MAXM = 400001;

int N, M, NC, NE, R[MAXN], C[MAXN], compInd[MAXN];

bool vis[MAXN], inc[MAXN];

vector<int> con[MAXN], rcon[MAXN], comp[MAXN];

long long ans[MAXM];

stack<int> S;

Page P[MAXN];

Event E[MAXN + MAXM];

void DFS(int x) {

 vis[x] = true;

 for (int i = 0; i < con[x].size(); i++) {

 if (!vis[con[x][i]]) {

 DFS(con[x][i]);

 }

 }

 S.push(x);

}

void RevDFS(int x) {

 vis[x] = false;

 compInd[x] = NC;

 comp[NC].push_back(x);

 for (int i = 0; i < rcon[x].size(); i++) {

 if (vis[rcon[x][i]]) {

 RevDFS(rcon[x][i]);

 }

 }

}

long double Inter(Page A, Page B) {

 return (B.r * (long double)B.c / A.c - A.r) / ((long double)B.c / A.c - 1);

}

void ProcessComp(int c) {

 // Sort component's pages by non-increasing R, breaking ties by non-decreasing C

 int np = 0;

 for (int i = 0; i < comp[c].size(); i++) {

 int j = comp[c][i];

 P[np++] = Page(R[j], C[j]);

 }

 sort(P, P + np);

 // Remove pages which are strictly less useful than others

 int n = 0;

 for (int i = 0; i < np; i++) {

 if (n == 0 || P[i].c < P[n - 1].c) {

 while (n >= 2) {

 if (Inter(P[n - 1], P[i]) > Inter(P[n - 2], P[n - 1])) {

 break;

 }

 n--;

 }

 P[n++] = P[i];

 }

 }

 np = n;

 // Iterate over pages

 E[NE++] = Event(P[0].r, -1, P[0].c, 0);

 for (int i = 1; i < np; i++) {

 // Calculate score at which these 2 pages are equally optimal

 Page A = P[i - 1];

 Page B = P[i];

 long long r = Inter(A, B) + 1 - 1e-12;

 long long t1 = (r - A.r) * A.c;

 long long t2 = (r - B.r) * B.c;

 E[NE++] = Event(r, -1, B.c - A.c, t2 - t1);

 }

}

Woburn Challenge 2017-18: Round 3 (Solutions)

10

int main() {

 // Input

 cin >> N;

 for (int i = 1; i <= N; i++) {

 int K;

 cin >> R[i] >> C[i] >> K;

 while (K--) {

 int L;

 cin >> L;

 con[i].push_back(L);

 rcon[L].push_back(i);

 }

 }

 cin >> M;

 for (int i = 0; i < M; i++) {

 int q;

 cin >> q;

 E[NE++] = Event(q, i, 0, 0);

 }

 // Divide graph into SCCs

 for (int i = 1; i <= N; i++) {

 if (!vis[i]) {

 DFS(i);

 }

 }

 while (!S.empty()) {

 if (vis[S.top()]) {

 RevDFS(S.top());

 NC++;

 }

 S.pop();

 }

 // Find and process all SCCs with no incoming edges

 for (int i = 1; i <= N; i++) {

 int a = compInd[i];

 for (int j = 0; j < con[i].size(); j++) {

 int b = compInd[con[i][j]];

 if (a != b) {

 inc[b] = true;

 }

 }

 }

 for (int i = 0; i < NC; i++) {

 if (!inc[i]) {

 ProcessComp(i);

 }

 }

 // Sweep over events in increasing order of score

 long long tot = 0, c = 0;

 sort(E, E + NE);

 for (int i = 0; i < NE; i++) {

 if (i > 0) {

 tot += c * (E[i].r - E[i-1].r);

 }

 if (E[i].q >= 0) {

 ans[E[i].q] = tot;

 } else {

 c += E[i].deltaC;

 tot += E[i].deltaT;

 }

 }

 // Output

 for (int i = 0; i < M; i++) {

 cout << ans[i] << endl;

 }

 return 0;

}

