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Problem J1: Cownterintelligence 

Upon inputting each cow i's moo frequency Mi, we'll need to determine whether it's a power-of-2 multiple of F, and 

output the number i if it's not. 

One way to check this is to initialize a variable x to be equal to F, and then repeatedly multiply x by 2 while 

checking if it's equal to Mi at each iteration. If we do find a value of x which is equal to Mi, then we know that cow i 

isn't an imposter, and we'll want to skip over it. On the other hand, if x never becomes equal to Mi and instead gets 

to be larger than Mi, then we know that cow i is an alien imposter. 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int main() { 

  int N, F; 

  cin >> N >> F; 

  // Iterate over the cows. 

  for (int i = 1; i <= N; i++) { 

    int M; 

    cin >> M; 

    // Check if it's a power-of-2 multiple of F. 

    bool alien = true; 

    for (int x = F; x <= M; x *= 2) { 

      if (x == M) { 

        alien = false; 

      } 

    } 

    // Output i if it's an alien. 

    if (alien) { 

      cout << i << endl; 

    } 

  } 

  return 0; 

} 

Problem J2: Redundant Formations 

Our overall approach should be to consider each possible substring of S, check whether or not it's redundant, 

assemble a list of distinct substrings which are, and output the number of substrings in this list at the end. 

We can do so by iterating over all pairs of indices (i, j), such that 1 ≤ i < j ≤ |S|. Each such pair corresponds to the 

substring Si..j, with a length of L = j – i + 1. We can then consider each index k between i + 1 and j (inclusive), and 

check if the substring Sk..(k + L – 1) is equal to Si..j (note that k should also be capped at |S| – L + 1 to avoid considering 

substrings which would go past the end of S). If such an index k is found, then a pair of overlapping equal 

substrings has also been found, meaning that Si..j must be redundant. 

What remains is maintaining the list of distinct redundant substrings, and being able to add Si..j to it if not already 

present. One option is to maintain this list as an array, and loop over all of its existing entries to check if Si..j is equal 

to any of them. A more elegant option is to use a built-in data structure such as a C++ set, which will automatically 

ensure that its entries are all distinct. 

The time complexity of the solution described above is O(N
4
), which is comfortably fast enough, though it's also 

possible to optimize it to O(N
3
). 
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Official Solution (C++) 

#include <iostream> 

#include <set> 

#include <string> 

using namespace std; 

 

int main() { 

  string S; 

  cin >> S; 

  int N = S.size(); 

  // Consider all possible substrings and find redundant ones. 

  set<string> ans; 

  for (int i = 0; i < N; i++) { 

    for (int j = i + 1; j < N; j++) { 

      // Get substring at indices i..j. 

      int len = j - i + 1; 

      string s = S.substr(i, len); 

      // Check if this substring occurs again starting between i+1 and j. 

      for (int k = i + 1; k <= j && k + len <= N; k++) { 

        if (S.substr(k, len) == s) { 

          ans.insert(s); 

          break; 

        } 

      } 

    } 

  } 

  cout << ans.size() << endl; 

  return 0; 

} 

Problem J3/S1: An Interspecific Army 

To minimize D, it turns out that it's always optimal to pair the worst cow with the worst monkey, the second-worst 

cow with the second-worst monkey, and so on. To prove this, let’s consider a pair of cows with combat skill levels 

C1 and C2 (such that C1 < C2), and a pair of monkeys with combat skill levels M1 and M2 (such that M1 < M2). We 

note that forming the pairs (C1, M2) and (C2, M1) can never be better than forming the pairs (C1, M1) and (C2, M2). 

In other words, max(|C1 – M2|, |C2 – M1|) ≥ max(|C1 – M1|, |C2 – M2|). 

Having made this insight, we'll want to sort the two lists C1, …, CN and M1, …, MN in non-decreasing order, which 

can be done in O(N log N) time. We can then simply find and output the maximum value of |Ci – Mi| over i = 1..N. 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

int main() { 

  int N, C[100005], M[100005], D = 0; 

  cin >> N; 

  for (int i = 0; i < N; i++) cin >> C[i]; 

  for (int i = 0; i < N; i++) cin >> M[i]; 

  // Sort cow/monkey combat skill levels. 

  sort(C, C + N); 

  sort(M, M + N); 

  // Greedily pair them up in order. 

  for (int i = 0; i < N; i++) { 

    D = max(D, abs(C[i] - M[i])); 

  } 

  cout << D << endl; 

  return 0; 

} 
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Problem J4/S2: Cowmmunication Network 

This problem can be represented as a graph, with N nodes (one for each combat unit) and M undirected, weighted 

edges (one for each potential communication channel). We're then asked to find a subset of the edges with 

maximum total weight which result in the entire graph being connected. This sounds very similar to finding the 

minimum spanning tree of the graph – in this case, more of its "maximum spanning tree", which is essentially the 

same thing. Note that any algorithm for finding a graph's minimum spanning tree could instead find the maximum 

spanning tree by inverting some comparisons. 

So, the only real difference is that we're allowed to use as many edges as we want, rather than exactly N – 1 edges. 

Note that this difference goes away if all edges have negative weights, as we'd want to use as few of them as 

possible (in other words, N – 1 of them). 

The fact that some edges can have positive weights ends up not changing the solution too significantly. All such 

edges should clearly be used, even if they are not necessary for the graph's maximum spanning tree. Therefore, we 

can essentially find the maximum spanning tree as normal, and then additionally use all remaining edges with 

positive weights. 

There are two standard algorithms for finding maximum spanning trees: Kruskal's and Prim's. Both can be slightly 

modified to solve this problem. Kruskal's works out very simply – when processing each edge (in non-increasing 

order of weight), it should still be used if it would connect two nodes which aren't yet connected, but it should also 

be used if its weight is positive. Prim's takes a bit more work, but one way to modify it is to keep track of exactly 

which edges get used in the maximum spanning tree, and then add on all unused positive-weight edges at the end. 

Both algorithms can be implemented in O(N + M log M) time. 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

const int MAXN = 100005; 

const int MAXM = 200000; 

 

struct Edge { 

  int a, b, c; 

  Edge() {} 

 

  bool operator<(const Edge &B) const { 

    return c > B.c; 

  } 

}; 

 

int N, M; 

int Root[MAXN], Rank[MAXN]; 

Edge E[MAXM]; 

 

// Returns the root of i's component in the disjoint set union. 

int Find(int i) { 

  if (Root[i] == i) { 

    return Root[i]; 

  } 

  return Root[i] = Find(Root[i]); 

} 

 

// Returns false if i and j are already in the same component in the disjoint set union, 

// otherwise merges their components and returns true. 
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bool Merge(int i, int j) { 

  i = Find(i), j = Find(j); 

  if (i == j) { 

    return false; 

  } 

  if (Rank[i] > Rank[j]) { 

    Root[j] = i; 

  } else { 

    if (Rank[i] == Rank[j]) { 

      Rank[j]++; 

    } 

    Root[i] = j; 

  } 

  return true; 

} 

 

int main() { 

  cin >> N >> M; 

  for (int i = 1; i <= N; i++) { 

    Root[i] = i; 

  } 

  for (int i = 0; i < M; i++) { 

    cin >> E[i].a >> E[i].b >> E[i].c; 

  } 

  // Sort edges by non-increasing C. 

  sort(E, E + M); 

  // Greedily construct "MST" with modified Kruskal's. 

  long long ans = 0; 

  for (int i = 0; i < M; i++) { 

    // Positive edges should always be used, others only if necessary. 

    if (Merge(E[i].a, E[i].b) || E[i].c > 0) { 

      ans += E[i].c; 

    } 

  } 

  // Impossible? 

  for (int i = 2; i <= N; i++) { 

    if (Merge(1, i)) { 

      cout << "Impossible" << endl; 

      return 0; 

    } 

  } 

  cout << ans << endl; 

  return 0; 

} 

Problem J5/S3: Explosive Ordinance Disposal  

In order to minimize the sum of V1..N, we'll want to generally use the smallest V values possible. After some thought, 

it should become clear that very small values will indeed do the trick – in fact, limiting ourselves to just 1 ≤ Vi ≤ 3 

is always sufficient to produce a valid solution. However, upon further thought, we realize that those values may 

not quite yield an optimal solution – in particular, it may be more optimal overall to use various products of small 

primes. For example, an instance of Vi = 6 could allow many other V values to be reduced from 3 to 2. It’s difficult 

to say exactly how large the V values in an optimal solution might get for a given value of N, but limiting ourselves 

to all possible values between 1 and 30 (inclusive) will be more than enough. 

That insight isn't enough to directly suggest how the V values should optimally be assigned, but at that point we can 

use dynamic programming to efficiently find an optimal assignment. Let's represent the system of terminals and 

wires as a tree, rooted at an arbitrary node such as node 1. Then, let DP[i][v] be the minimum sum of V values in 

the subtree rooted at i, such that Vi = v. DP[i][v] can be computed recursively based on the DP values of i's children. 

Each child c can be handled independently, and we can simply consider all possible choices for Vc such that the 
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GCD of Vi and Vc satisfies the wire connecting terminals i and c, choosing the one which minimizes DP[c][Vc]. At 

the end, the answer will be min{DP[1][v]} over all possible values of v. The time complexity of this algorithm is 

O(N). 

Official Solution (C++) 

#include <iostream> 

#include <vector> 

using namespace std; 

 

const int MAXN = 201; 

 

struct Edge { 

  int i, c; 

  Edge(int i, int c) : i(i), c(c) {} 

}; 

 

vector<Edge> E[MAXN]; 

int DP[MAXN][31];  // DP[i][v] = minimum sum of labels in node i's subtree, with i having label v. 

 

int GCD(int a, int b) { 

  return b ? GCD(b, a % b) : a; 

} 

 

int Solve(int i, int v, int p) { 

  // Already memoized? 

  if (DP[i][v]) { 

    return DP[i][v]; 

  } 

  // Determine best label for each child node. 

  int d = v; 

  for (int j = 0; j < E[i].size(); j++) { 

    if (E[i][j].i != p) { 

      int m = 1e9; 

      for (int v2 = 1; v2 <= 30; v2++) { 

        int g = GCD(v, v2); 

        if ((E[i][j].c == 0) == (g == 1)) { 

          m = min(m, Solve(E[i][j].i, v2, i)); 

        } 

      } 

      d = min(d + m, (int)1e9); 

    } 

  } 

  // Memoize result. 

  return DP[i][v] = d; 

} 

 

int main() { 

  // Input tree. 

  int N; 

  cin >> N; 

  for (int i = 0; i < N - 1; i++) { 

    int a, b, c; 

    cin >> a >> b >> c; 

    E[a].push_back(Edge(b, c)); 

    E[b].push_back(Edge(a, c)); 

  } 

  // Root tree at node 1 and consider each possible label for it. 

  int ans = 1e9; 

  for (int v = 1; v <= 30; v++) { 

    ans = min(ans, Solve(1, v, 0)); 

  } 

  cout << ans << endl; 

  return 0; 

} 
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Problem S4: Ultimatum  

Let's start by considering how to evaluate the answer to a given query i at all, before worrying about how to do so 

efficiently. Let h be the height of the Xi-th tallest skyscraper. Next, let c be the total number of height-h skyscrapers, 

and let v be the number of height-h skyscrapers which will be vaporized. Note that this means that, for any given 

height-h skyscraper, the probability that it'll be vaporized is v/c. The answer can then be expressed as the sum of the 

following 3 values: 

1. The total number of citizens in the interval [Li, Ri]. 

2. The expected number of citizens in vaporized height-h skyscrapers outside the interval [Li, Ri]. Note that this 

is equal to v/c multiplied by the total number of citizens in height-h skyscrapers outside the interval [Li, Ri], 

due to linearity of expectation. 

3. The total number of citizens in skyscrapers taller than h outside the interval [Li, Ri]. 

Naively, at least values 2 and 3 take O(N) time to compute per query, so next we'll need to look for an efficient way 

to share computations between queries. These two values depend on h, which depends on Xi, which suggests that 

processing the M queries in non-decreasing order of X may be most convenient. So, we'll want to input all of them, 

sort them by X, compute and store their answers, and output them in the original order at the end. 

Let's imagine that X starts off at 0. Then, each time X increases by one, either h decreases to a new smaller value (at 

which point we can count its corresponding value of c, and set v to 1), or h stays constant and v increases by one. 

This means that we can easily keep track of the v/c portion of the answer. The tricky remaining part is being able to 

look up interval sums of Ci values efficiently, for three types of skyscrapers – all of them, only ones with exactly 

the current height h, and only ones taller than height h. An advanced data structure such as a binary indexed tree (or 

a more general segment tree) will do the trick here. For example, we can maintain three binary indexed trees, one 

for each of the three types of skyscrapers mentioned above, and update them appropriately whenever h decreases. 

In total, each Ci value will be inserted and removed at most once into each of the binary indexed trees, with a time 

complexity of O(log N) each, and each binary indexed tree will be queried once per query, also with a time 

complexity of O(log N) each. Overall, this approach can achieve a time complexity of O((N + M) log N). 

Official Solution (C++) 

#include <algorithm> 

#include <iomanip> 

#include <iostream> 

#include <vector> 

using namespace std; 

 

const int MAXN = 200005; 

 

typedef long long LL; 

typedef long double LD; 

typedef pair<int, int> PR; 

 

int N, M, H[MAXN], C[MAXN]; 

PR ord[MAXN]; 

vector<pair<int, PR>> Q[MAXN]; 

LL BIT[3][MAXN];  // #0: All skyscrapers, #1: Current-height skyscrapers, #2: Taller skyscrapers. 

LD ans[MAXN]; 

 

void Update(int b, int i, int v) { 

  for (i++; i <= N; i += (i & -i)) { 

    BIT[b][i] += v; 

  } 

} 

 



Woburn Challenge 2017-18: Finals (Solutions) 

8 

LL Query(int b, int i) { 

  LL v = 0; 

  for (i++; i > 0; i -= (i & -i)) { 

    v += BIT[b][i]; 

  } 

  return v; 

} 

 

int main() { 

  // Input, and initialize BIT #0. 

  cin >> N; 

  for (int i = 0; i < N; i++) { 

    cin >> H[i] >> C[i]; 

    ord[i] = make_pair(H[i], i); 

    Update(0, i, C[i]); 

  } 

  cin >> M; 

  for (int i = 0; i < M; i++) { 

    int X, L, R; 

    cin >> X >> L >> R; 

    Q[X].push_back(make_pair(i, make_pair(L - 1, R - 1))); 

  } 

  // Iterate over skyscrapers in order of non-increasing height. 

  sort(ord, ord + N); 

  reverse(ord, ord + N); 

  int eqA = 0, eqB = -1; 

  for (int i = 0; i <= N; i++) { 

    // Skyscraper at new height? 

    if (i < N && i > eqB) { 

      // Move all skyscrapers at previous height from BIT #1 to BIT #2. 

      for (int j = eqA; j <= eqB; j++) { 

        int k = ord[j].second; 

        Update(1, k, -C[k]); 

        Update(2, k, C[k]); 

      } 

      // Find new set of skyscrapers at current height, and insert them into BIT #1. 

      eqA = eqB = i; 

      while (eqB + 1 < N && ord[eqB + 1].first == ord[eqA].first) { 

        eqB++; 

      } 

      for (int j = eqA; j <= eqB; j++) { 

        int k = ord[j].second; 

        Update(1, k, C[k]); 

      } 

    } 

    // Compute probability of each current-height skyscraper having been vaporized. 

    int eqTot = eqB - eqA + 1; 

    int eqDone = i - eqA; 

    LD prob = (LD)eqDone / eqTot; 

    // Process queries with the current X value. 

    for (int j = 0; j < (int)Q[i].size(); j++) { 

      int q = Q[i][j].first, a = Q[i][j].second.first, b = Q[i][j].second.second; 

      // v1 = Sum of all skyscrapers in interval. 

      LL v1 = Query(0, b) - Query(0, a - 1); 

      // v2 = Expected sum of current-height skyscrapers vaporized outside interval. 

      LD v2 = prob * (Query(1, N - 1) - (Query(1, b) - Query(1, a - 1))); 

      // v3 = Sum of all taller skyscrapers outside interval. 

      LL v3 = Query(2, N - 1) - (Query(2, b) - Query(2, a - 1)); 

      // Store query answer for later. 

      ans[q] = v1 + v2 + v3; 

    } 

  } 

  // Output. 

  for (int i = 0; i < M; i++) { 

    cout << fixed << setprecision(9) << ans[i] << endl; 

  } 

  return 0; 

} 
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Problem S5: Crop Rectangles 

With each output depending only on a pair of integers (R, C), it's safe to guess that some sort of patterns can be 

found for small values of (R, C) which can extend to arbitrarily large values. It may be tempting to try solving 

various small cases by hand to look for such patterns, and it's simple to do so for some (such as when one 

dimension is equal to 1 or 2), but overall it proves far too difficult to do so for others. So, our best bet will be to 

write some code which can (inefficiently) find answers for small grids, and then look for patterns in its results. 

The most standard approach is with breadth-first search, in which the state includes information about which subset 

of cells have been visited, what cell the lawnmower is currently in, what direction it's facing in, and whether or not 

it turned just before its last move. This gives us 2
R×C

 × R × C × 4 × 2 states, with up to 3 transitions from each state. 

Many states are unreachable, so we'll want to hash states to track their reachability rather than maintaining a 

Boolean array of that size. This sort of BFS ends up running in a reasonable amount of time (under a minute) for 

any grid such that R×C is at most 40 or so, which will suffice for our purposes. 

Now, let's talk about the patterns which surface. For convenience, let A = min(R, C) and B = max(R, C), and let's 

talk in terms of the minimum number of "wasted" moves W (such that the answer is equal to R×C – 1 + W). If we 

run our BFS for all possible grids with 1 ≤ R, C ≤ 6, we can come up with the following observations: 

 When A = 1, W = 0. 

 When A = 2, it's impossible. 

 When A = 3 and B = 3, it's impossible. 

 When A = 3 and B ≥ 4, there's no clear pattern? 

 When A = 4, W = 4. If we examine the optimal lawnmower path for a 4x4 grid, it's relatively clear that it can 

be easily stretched out to arbitrarily large values of B, and that larger values of B can't help improve it. 

 When A ≥ 5, W = 2. If we examine the optimal lawnmower path for a 5x5 grid, it's relatively clear that it can 

be extended to larger grid sizes without wasting any additional moves (by either stretching it out along one 

dimension or repeatedly wrapping around the outside to increase both dimensions), and that larger grid sizes 

can't help improve it. 

The only problematic case is when A = 3 and B ≥ 4, which requires further investigation. It's once again safe to 

guess that a pattern will emerge for relatively small values of B which can extend to arbitrarily large values. To 

search for the pattern, we can try running our BFS again for as many 3×B grids as possible, which works 

reasonably up to around B = 15. 

Unfortunately, this is insufficient for the pattern to become completely obvious, but it is enough to guess it 

correctly. The W values for B = 4..11 are unpredictable ([4, 4, 6, 8, 10, 10, 10, 12]), but starting at B = 12 they 

finally start to repeat regularly ([14, 14, 16, 16, 18, 18, 20, 20, ...]). To gain full confidence, it's also possible to 

write a more specialized brute force algorithm for 3×B grids (or even use dynamic programming) to compute all W 

values up to much larger values of B, though that's less viable in the limited contest time. 

With that, all possible cases have been covered! For A = 3 and 4 ≤ B ≤ 11, we can either run our BFS or hardcode 

the values listed above, and for all other cases we have closed-form formulae for the answers. 
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Official Solution (C++) 

#include <cstring> 

#include <iostream> 

#include <queue> 

#include <set> 

using namespace std; 

 

const int MAXA = 3; 

const int MAXB = 12; 

const int dy[4] = {-1, 0, 1, 0}; 

const int dx[4] = {0, 1, 0, -1}; 

 

int A, B; 

 

struct State { 

  int d, y, x, z, t; 

  bool vis[MAXA][MAXB]; 

 

  State() {} 

  State(int d, int y, int x, int z, int t) : d(d), y(y), x(x), z(z), t(t) {} 

 

  long long hash() { 

    // Compute a hash representing the state. 

    long long h = 0; 

    for (int i = 0; i < A; i++)  { 

      for (int j = 0; j < B; j++) { 

        h <<= 1; 

        if (vis[i][j]) { 

          h++; 

        } 

      } 

    } 

    return (((h*A + y)*B + x)*4 + z)*3 + t; 

  } 

}; 

 

int Solve() { 

  // Initialize. 

  set<long long> S; 

  queue<State> Q; 

  State st = State(0, 0, 0, 1, 2); 

  memset(st.vis, 0, sizeof st.vis); 

  Q.push(st); 

  S.insert(st.hash()); 

  // BFS. 

  while (!Q.empty()) { 

    // Get state. 

    State st = Q.front(); 

    Q.pop(); 

    // Update state. 

    if (st.t < 2) { 

      st.t++; 

    } 

    st.vis[st.y][st.x] = 1; 

    // All cells visited? 

    bool done = true; 

    for (int i = 0; i < A && done; i++)  { 

      for (int j = 0; j < B && done; j++) { 

        if (!st.vis[i][j]) { 

          done = false; 

        } 

      } 

    } 

    if (done) { 

      return st.d; 

    } 

    // Go on. 

    st.d++; 
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    for (int z = 0; z < 4; z++) { 

      // New direction? 

      int t = st.t; 

      if (z != st.z) { 

        // Can't reverse. 

        if (z % 2 == st.z % 2) { 

          continue; 

        } 

        // Can't turn yet? 

        if (t < 2) { 

          continue; 

        } 

        t = 0; 

      } 

      // Get new position. 

      int y = st.y + dy[z], x = st.x + dx[z]; 

      if (y < 0 || y >= A || x < 0 || x >= B) { 

        continue; 

      } 

      // Get new state. 

      State st2 = st; 

      st2.y = y; 

      st2.x = x; 

      st2.z = z; 

      st2.t = t; 

      if (S.count(st2.hash())) { 

        continue; 

      } 

      Q.push(st2); 

      S.insert(st2.hash()); 

    } 

  } 

  // No solution found. 

  return -1; 

} 

 

int main() { 

  int N, R, C; 

  cin >> N; 

  while (N--) { 

    cin >> R >> C; 

    A = min(R, C); 

    B = max(R, C); 

    // Handle various cases. 

    int ans = A*B - 1; 

    if (A == 2) { 

      ans = -1; 

    } 

    if (A == 3) { 

      if (B >= 12) { 

        ans += 14 + (B - 12)/2*2; 

      } else { 

        ans = Solve(); 

      } 

    } 

    if (A == 4) { 

      ans += 4; 

    } 

    if (A > 4) { 

      ans += 2; 

    } 

    cout << ans << endl; 

  } 

  return 0; 

} 


