

2016-17 Online Round 2

Solutions

Automated grading is available for these problems at:

wcipeg.com

For problems to this contest and past contests, visit:

woburnchallenge.com

http://wcipeg.com/
http://woburnchallenge.com/

Woburn Challenge 2016-17: Round 2 (Solutions)

2

Problem J1: The Perfect Mate

We'll need to iterate over all N warriors, inputting their information and

keeping track of the best mate seen so far. We'll need to remember both

this optimal mate's name (so that it can be outputted at the end), and his

number of victories (so that we can determine if a superior mate is

found). For convenience, we can initialize his name as "None" and

victory count as –1. In this way, any suitable mate will replace him, and

if no suitable mates are found, we'll proceed to output "None".

When we consider each warrior, we should simply ignore them if

they've lost more than 0 battles. Otherwise, they should become the new

optimal mate if they've won strictly more battles than the previous mate

has. If they've only won an equal number of battles, the previous optimal

mate should be retained, as they appeared earlier in the list.

Problem J2: EHC

We should start by sorting all N existing holographic emitters in increasing order of distance from the mess hall. We

can then iterate over them while maintaining the maximum distance d down the hall that the EHC is so far able to

reach. d is initially equal to R, as there's an additional emitter at the entrance to the mass hall. When we consider

emitter i, which covers the inclusive range from Ei – R to Ei + R, the EHC can already reach this range if d ≥ Ei – R,

in which case no additional emitters must be installed right before emitter i. Otherwise, there's an intervening distance

of d' = E_i – R – D which must be filled in with emitters. Each emitter spans a distance of 2R metres, and so the

additional emitters should be evenly spaced out at intervals of 2R metres in order to minimize the number of them

that are required.

Therefore, ceil(d' / (2R))

new emitters must be

installed in order for the

EHC to be able to reach

emitter i. Either way, we

can then set d to E_i + R

and proceed to the next

emitter. Finally, the EHC

must still reach the end of

the hallway from the end of

the range of the furthest

emitter. If we pretend that

there's a dummy final

emitter at a distance of M +

R metres from the mess

hall, then this is equivalent

to the EHC reaching this

dummy emitter, allowing

the algorithm to avoid

having any other final step.

Official Solution (C++)

#include <iostream>

using namespace std;

int N, ansW = -1;

int main() {

 string ansS = "None";

 cin >> N;

 for (int i = 0; i < N; i++) {

 string S;

 int W, L;

 cin >> S >> W >> L;

 if (L == 0 && W > ansW) {

 ansS = S;

 ansW = W;

 }

 }

 cout << ansS << endl;

 return 0;

}

Official Solution (C++)

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int N, M, R;

int main() {

 cin >> N >> M >> R;

 vector<int> E(N);

 for (int i = 0; i < N; i++) {

 cin >> E[i];

 }

 E.push_back(M + R); // Dummy final emitter which must be reached.

 sort(E.begin(), E.end()); // Sort by increasing distance.

 int prev = R, ans = 0;

 for (int i = 0; i < (int)E.size(); i++) {

 int dist = E[i] - R - prev; // Distance from prev to current.

 if (dist > 0) {

 ans += (dist - 1)/(2 * R) + 1; // Cover intervening distance.

 }

 prev = E[i] + R;

 }

 cout << ans << endl;

 return 0;

}

Woburn Challenge 2016-17: Round 2 (Solutions)

3

Problem J3/S1: Most Illogical

Any Boolean expression in this problem can be thought of as consisting of one or more "clauses", where each clause

consists of one or more literals and'ed together, with all of the clauses then or'ed together. For example, the

expression A or B and C and D or E consists of 3 clauses, "A", "B and C and D", and "E".

If at least one of the literals in a clause is false, then the result of the whole clause is definitely false, due to the

properties of the "and" operator. Otherwise, if at least one of the literals is unknown, then the result of the whole

clause is unknown (it could be false if any unknown literals are false, or it could be true if all unknown literals are

true). Finally, if all of the literals are true, then the result of the whole clause is true.

Similar logic can be applied to the whole expression, though inverted due to properties of the "or" operator. If at

least one of the clauses is true, then the result of the whole expression is true. Otherwise, if at least one of the clauses

is unknown, then the result of the whole expression is unknown. Finally, if all of the clauses are false, then the result

of the whole expression is false.

With these facts in mind, we can process the expression from left to right, while keeping track of the result of the

ongoing clause, and the result of the whole expression. When a literal is processed, the result of the ongoing clause

should be updated accordingly (for example, if a "false" literal is encountered, then the result of the ongoing clause

should be set to false). Similarly, when the end of a clause is reached (which happens after the last literal or when an

"or" operator is encountered), the result of the whole expression should be updated according to the result of that

clause, and then a new clause should be started.

Official Solution (C++)

#include <iostream>

using namespace std;

int N;

string expr = "false"; // Whole expression is false until proven otherwise.

string clause = "true"; // Ongoing clause is true until proven otherwise.

int main() {

 cin >> N;

 for (int i = 0; i < N; i += 2) {

 string val, op = "";

 cin >> val;

 if (val == "false") {

 clause = "false"; // Ongoing clause is now definitely false.

 }

 if (val == "unknown" && clause == "true") {

 clause = "unknown"; // Ongoing clause is no longer true.

 }

 if (i < N - 1) {

 cin >> op;

 }

 if (op != "and") { // End of the ongoing clause was reached.

 if (clause == "true") {

 expr = "true"; // Whole expression is now definitely true.

 }

 if (clause == "unknown" && expr == "false") {

 expr = "unknown"; // Whole expression is no longer false.

 }

 clause = "true"; // Start a new clause.

 }

 }

 cout << expr << endl;

 return 0;

}

Woburn Challenge 2016-17: Round 2 (Solutions)

4

Problem J4/S2: Away Mission

Let's first consider the case in which Q = 1. We want to assemble shirts with triples of CCC values (r, g, b) such that,

for as few of them as possible, r > m, where m = max(g, b).

For starters, let's just consider forming pairs of the green and blue CCCs (g, b), with the goal of maximizing their

resulting m values. If we consider the list of all 2N green/blue CCC values, the best we could ever hope to do is for

the largest N of these 2N values to be equal to the N produced m values. As it turns out, this can always be

accomplished – for example, if we pair the largest green CCC with the smallest blue CCC, the second-largest green

CCC with the second-smallest blue CCC, and so on. As

such, if we sort these 2N values and take the largest N

of them, we'll get an optimal set of m values.

What remains is pairing the r values against these m

values, which can be done greedily. Assuming that both

lists are sorted in non-decreasing order, let's iterate

upwards through the r values. For a given r value, we

might as well match it with the smallest remaining m

value which is larger than or equal to it, if any. This can

be done by maintaining a pointer into the sorted list of

m values, and advancing it forwards at each step until a

sufficiently large m value is reached (or until it hits the

end of the array, at which point no more non-red shirts

can be created).

The other case, in which Q = 2, is similar – we now want

to maximize the number of triples in which r > m. This

time, we'll want to form N (g, b) pairs with the goal of

minimizing their resulting m values. If we consider the

largest of all of the green or blue CCC values, it will

necessarily need to be one of the m values. It'll need to

be matched with some value from the opposite list, so

we might as well pair it with the largest of those, in an

effort to minimize future m values. Therefore, it's

always optimal to pair the largest green and blue CCCs

together, and this can be extended to show that we

should always sort the lists of green and blue CCC

values independently, and then pair them up in that

order to compute an optimal set of m values.

At that point, we can follow a very similar algorithm to

the Q = 1 case in order to greedily pair up the r and m

values, this time iterating downwards through the r

values and matching each one against the larger

remaining m value which is smaller than it (if any).

The time complexity of this algorithm in either of the

two cases is dependent on sorting O(N) component

values. This can be done in O(N log N) time, or O(N)

time if we take advantage of their limited magnitudes

with radix sort.

Official Solution (C++)

#include <algorithm>

#include <iostream>

using namespace std;

const int MAXN = 200005;

int N, Q, red = 0;

int R[MAXN], G[MAXN], B[MAXN], GB[2*MAXN];

int main() {

 cin >> N >> Q;

 for (int i = 0; i < N; i++) {

 cin >> R[i];

 }

 sort(R, R + N);

 if (Q == 1) {

 for (int i = 0; i < 2*N; i++) {

 cin >> GB[i];

 }

 sort(GB, GB + 2*N);

 int j = 2*N - 1;

 for (int i = N - 1; i >= 0; i--) {

 if (R[i] <= GB[j]) {

 j--;

 } else {

 red++;

 }

 }

 } else /* Q == 2 */ {

 for (int i = 0; i < N; i++) {

 cin >> G[i];

 }

 for (int i = 0; i < N; i++) {

 cin >> B[i];

 }

 sort(G, G + N);

 sort(B, B + N);

 for (int i = 0; i < N; i++) {

 GB[i] = max(G[i], B[i]);

 }

 int j = 0;

 for (int i = 0; i < N; i++) {

 if (R[i] > GB[j]) {

 j++;

 red++;

 }

 }

 }

 cout << red << endl;

 return 0;

}

Woburn Challenge 2016-17: Round 2 (Solutions)

5

Problem S3: Turbolift Testing

Solving this problem efficiently requires precomputing

various useful values, and then using them to answer the

questions.

Let's consider each of the N button sequences. Assuming

that sequence i is executed with the turbolift starting at

floor 0, let len[i] be the length of the sequence, delta[i]

be the turbolift's final floor, maxP[i][j] be the highest

floor reached at any point during the first j button presses

of the sequence, minP[i][j] be the lowest floor reached

during the first j button presses, maxS[i] be the highest

floor reached at any point during the whole sequence

(equal to maxP[i][len[i]]), and minS[i] be the lowest

floor reached (equal to minP[i][len[i]]). These values can

all be easily computed by simulating the sequence's

button presses in O(L[i]) time, which is sufficient as the

sum of the sequences' lengths is at most 200,000.

Next, let's repeat a similar process over the entire

sequence of M button sequences. Let len2[i] be the total

length of the first i executed sequences, delta2[i] be the

turbolift's final floor after the first i sequences, max2[i]

be the highest floor reached at any point during the first

i sequences, and min2[i] be the lowest floor reached

during the first i sequences. These values can similarly

be easily computed in O(M) time, with the help of the

precomputed len, delta, maxS, and minS values. Note

that len2[0] = delta2[0] = max2[0] = min2[0] = 0.

Finally, we're set up to answer the questions efficiently.

Let's say we're interested in the first b button presses.

The b-th button press must occur during some sequence

i (1 ≤ i ≤ M) – in particular, during the first sequence i

such that b ≤ len2[i]. Since the values len2[0..M] are

increasing, we can use binary search to determine the

value of i in O(log M) time. Now, since the first i – 1

button sequences have been completed before the b-th

button press, the highest floor reached during the first b

button presses is at least max2[i – 1]. However, the first

b – len2[i – 1] button presses of button sequence Si were

additionally executed after that, which is where more of

our precomputed values come into play – the answer

must be max(max2[i – 1], delta2[i – 1] + maxP[Si][b –

len2[i – 1]]). Similarly, the minimum floor reached is

min(min2[i – 1], delta2[i – 1] + minP[Si][b – len2[i – 1]]).

The time complexity of this algorithm is

O(sum{L[1..N]} + M + Q log M).

Official Solution (C++)

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

const int MAXN = 200005;

int N, M, Q;

int S[MAXN],L[MAXN];

long long mu2[MAXN], md2[MAXN], ans1[MAXN],

ans2[MAXN], p2[MAXN];

pair<long long, int> P[MAXN];

vector<long long> mu[MAXN], md[MAXN];

string s;

int main() {

 cin >> N >> M >> Q;

 // Process sequences.

 for (int i = 0; i < N; i++) {

 // Input sequence.

 cin >> s;

 L[i] = s.length();

 // Precompute prefix mins/maxes for this sequence.

 mu[i].resize(L[i] + 1, 0);

 md[i].resize(L[i] + 1, 0);

 long long p = 0;

 for (int j = 0; j < L[i]; j++) {

 p += (s[j] == 'U' ? 1 : -1);

 mu[i][j + 1] = max(mu[i][j], p);

 md[i][j + 1] = min(md[i][j], p);

 }

 // Store overall min/max/delta for this sequence.

 mu2[i] = mu[i][L[i]];

 md2[i] = md[i][L[i]];

 p2[i] = p;

 }

 for (int i = 0; i < M; i++) {

 cin >> S[i];

 S[i]--;

 }

 for (int i = 0; i < Q; i++) {

 cin >> P[i].first;

 P[i].second = i;

 }

 // Process queries in increasing order.

 sort(P, P + Q);

 int j = 0;

 long long c = 0, p = 0, a1 = 0, a2 = 0;

 for (int i = 0; i < Q; i++) {

 // Process completed sequences.

 int k;

 while (P[i].first > c + L[k = S[j]]) {

 a1 = min(a1, p + md2[k]);

 a2 = max(a2, p + mu2[k]);

 p += p2[k];

 c += L[k];

 j++;

 }

 // Also consider prefix min/max for ongoing

sequence.

 int d = P[i].first - c;

 ans1[P[i].second] = min(a1, p + md[k][d]);

 ans2[P[i].second] = max(a2, p + mu[k][d]);

 }

 // Output query answers in original order.

 for (int i = 0; i < Q; i++) {

 cout << ans1[i] << ' ' << ans2[i] << '\n';

 }

 return 0;

}

Woburn Challenge 2016-17: Round 2 (Solutions)

6

Problem S4: Diplomacy

Let's consider plotting the temperature and gravity values on a Cartesian plane. For example, let's pretend that all

temperature values are x-coordinates, and all gravity values are y-coordinates. Every race's preferred requirements

that correspond to a rectangle, and the answer is the largest number of rectangles that overlap (inclusively) at any

single point.

This geometric representation suggests a possible approach - line sweep. Let's consider sweeping upwards through

the rectangles. As we go, we'll want to handle interesting events, namely the bottoms and tops of rectangles. A

rectangle with lower-left corner (x1, y1) and upper-right corner (x2, y2) will correspond to a starting event at y-

coordinate y1, and an ending event at y-coordinate y2, with both events tied to the range of x-coordinates [x1, x2]. We'll

want to generate all 2N events and then iterate over them in increasing order of y-coordinate. Because rectangles'

ranges should be inclusive, we should carefully break ties in the sorting so that we iterate over all starting events at

a given y-coordinate before the ending events at the same y-coordinate.

During the line sweep, we'll want to keep track of what rectangles are currently ongoing in some fashion (in terms of

their x-coordinate ranges). Importantly, we'll need to be able to efficiently determine the largest number of these 1-

dimensional inclusive ranges that overlap at any single point. If we can compute this value at every step of the line

sweep, then the final answer will be the largest of these values.

What remains is coming up with a data structure which will allow us to handle these updates and queries efficiently

(as we'll have to do O(N) of them over the course of the line sweep). Let's model exactly what we need the data

structure to support. Let A[i] be the number of active ranges which include point i. A rectangle's starting event

corresponds to incrementing A[i] for each i in the event's range [x1, x2]. Similarly, a rectangle's event corresponds to

decrementing this range of A values. Finally, we'll need to look up the largest A value.

One thing worth noting about this A array is that it can be very large (as x-coordinates can be between 1 and 109).

However, the exact values of the rectangles' x-coordinates don't matter, only their relative order does. As such, they

can be compressed down to values between 1 and at most 2N. This will reduce A's size down to O(N), which is more

manageable.

Now, what data structure can efficiently support the required set of updates and queries? A segment tree with lazy

propagation can get them done in O(log N) time each, which will result in an overall time complexity of O(N log N).

Each node in the tree should simply store the largest A value in its range, as well as a lazy value of how much its

entire range of A values should be incremented/decremented by. This works out nicely due to the observation that,

when a set of values are all incremented by a constant amount x, their maximum value will also increase by x.

Therefore, range updates can be lazily applied in a standard fashion, and the maximum of all of the values can be

determined from the root of the tree. It's worth noting that an interval tree can also be used in place of a segment tree

to manage the state of the ongoing rectangles during the line sweep.

Woburn Challenge 2016-17: Round 2 (Solutions)

7

Official Solution (C++)

#include <algorithm>

#include <iostream>

using namespace std;

int sz, treeMax[1100000], treeLazy[1100000];

// Lazily propagate updates to node i.

void Prop(int i) {

 treeMax[i] += treeLazy[i];

 if (i < sz) { // Update children's lazy values, if any.

 treeLazy[i*2] += treeLazy[i];

 treeLazy[i*2 + 1] += treeLazy[i];

 }

 treeLazy[i] = 0; // Clear lazy value.

}

// Update range a..b by a delta of d. Currently at node i, spanning range r1..r2.

void Update(int i, int r1, int r2, int a, int b, int d) {

 Prop(i); // Propagate this node.

 if (a <= r1 && r2 <= b) { // Is this node contained in the update range?

 treeLazy[i] += d;

 Prop(i);

 return;

 }

 // Recurse to affected children.

 int m = (r1 + r2)/2;

 if (a <= m) {

 Update(i*2, r1, m, a, b, d);

 }

 if (b > m) {

 Update(i*2 + 1, m + 1, r2, a, b, d);

 }

 // Propagate children and update this node based on their values.

 Prop(i*2);

 Prop(i*2 + 1);

 treeMax[i] = max(treeMax[i*2], treeMax[i*2 + 1]);

}

int N, a, b, c, d;

vector<int> comp;

vector<pair<pair<int, int>, pair<int, int> > > ev;

int main() {

 cin >> N;

 for (int i = 0; i < N; i++) {

 cin >> a >> b >> c >> d;

 // Collect y-coordinates and create line sweep events for left/right edges of rectangle.

 comp.push_back(c);

 comp.push_back(d);

 ev.push_back(make_pair(make_pair(a, 1), make_pair(c, d)));

 ev.push_back(make_pair(make_pair(b + 1, -1), make_pair(c, d)));

 }

 // Get list of unique y-coordinates.

 sort(comp.begin(), comp.end());

 comp.resize(unique(comp.begin(), comp.end()) - comp.begin());

 // Initialize segment tree of sufficient size.

 for (sz = 1; sz < (int)comp.size(); sz *= 2) {}

 // Line sweep through events by increasing x-coordinate.

 sort(ev.begin(), ev.end());

 int ans = 0;

 for (int i = 0; i < (int)ev.size(); i++) {

 int d = ev[i].first.second; // Get event delta.

 // Get event's compressed y-coordinates.

 int a = lower_bound(comp.begin(), comp.end(), ev[i].second.first) - comp.begin();

 int b = lower_bound(comp.begin(), comp.end(), ev[i].second.second) - comp.begin();

 Update(1, 0, sz - 1, a, b, d); // Update segment tree.

 ans = max(ans, treeMax[1]); // Consider max value in the tree.

 }

 cout << ans << endl;

 return 0;

}

