

2016-17 Online Round 1

Solutions

Automated grading is available for these problems at:
wcipeg.com

For problems to this contest and past contests, visit:
woburnchallenge.com

http://wcipeg.com/
http://woburnchallenge.com/

Woburn Challenge 2016-17: Round 1 (Solutions)

2

Problem J1: A Spooky Season
Output "sp", then have a loop which runs S times and outputs one
"o" each time, and then finally output "ky". Remember to not
output newlines in between these characters!

Problem J2: Frankenstein’s Monster
An important skill in solving problems like this one is interpreting
the statement. The most important part of the statement is this:

“A ‘word’ is a maximal consecutive sequence of non-period characters in the string. That is, each
word is either preceded by a period or is at the start of the string. Similarly, each word is followed
by a period or is at the end of the string.”

This means that we should replace all substrings "Frankenstein" with "Frankenstein's.Monster" if and
only if one of the follow is true:

• it’s at the beginning of S (always followed by a period, except when it’s also at the end of S)
• it’s both preceded and followed by a period
• it’s at the end of S (always preceded by a period, except when it’s also at the beginning of S)

We can solve this by finding all substrings Frankenstein and checking all these cases. Alternatively, this problem
becomes a bit simpler if we start by augmenting the given string, adding one "." to the start and another "." to the
end (we just have to remember to remove these at the end before outputting the answer). We then want to replace
every occurrence of ".Frankenstein." with ".Frankenstein's.monster.". To find each occurrence, some
programming languages provide a built-in function to search for a substring within a string. Alternatively, this can
be done by looping over every character in the string and checking if the 14-character substring starting there is equal
to ".Frankenstein.". Once an occurrence is found starting at index i, one way to replace it is to replace the whole
string S with the concatenation of substrings S[1…(i – 1)] + ".Frankenstein's.monster." + S[(i + 14)…|S|]
where |S| is the length of S.

Official Solution (C++)
#include <iostream>
using namespace std;

string s;

int main() {
 cin >> s;
 s = "." + s + "."; // Pad with periods for convenience.
 while (true) {
 int i = s.find(".Frankenstein.");
 if (i == string::npos) break; // No more occurences found.
 s = s.substr(0, i) + ".Frankenstein's.monster." + s.substr(i + 14);
 }
 // Output the string with the padded periods removed.
 cout << s.substr(1, s.length() - 2) << endl;
 return 0;
}

Official Solution (C++)
#include <iostream>
using namespace std;

int S;

int main() {
 cin >> S;
 cout << "sp";
 for (int i = 0; i < S; i++) {
 cout << "o";
 }
 cout << "ky" << endl;
 return 0;
}

Woburn Challenge 2016-17: Round 1 (Solutions)

3

Problem J3/S1: Hide and Seek
This problem can be approached greedily. If we consider the leftmost room a, Michael's leftmost chosen room b
might as well be the rightmost possible room such that a and b are within D units of each other, since that'll cover
not only room a, but as many more rooms to the right of a as possible. In particular, if room c is the rightmost room
which is within D units of room b, then room b will cover all rooms between a and c (inclusive).

Therefore, if we can determine the locations of these 3 rooms a, b, and c, then we can add room b to Michael's list of
chosen rooms, and henceforth ignore room c and all rooms left of it, thereby reducing the problem to only the section
of the hallway to the right of room c. At that point, we can repeat this process until there are no more rooms remaining
to the right of room c.

The first step is to find room a. Let's define a1 to be the leftmost character of room a, and a2 to be its rightmost
character (and similarly for rooms b and c). a1 is simply the first "." in the floor plan. a2 is then the character before
the first "#" after a1.

The second step is to find room b. The furthest character in range of room a is a2 + D. If that character is a ".", then
it's inside room b, and so b2 is the character before the first "#" after a2 + D. Otherwise, room b must be to the left,
so b2 is the last "." before a2 + D. We don't need to find b1.

The final step is to find room c. The furthest character in range of room b is b2 + D. We can repeat exactly the same
process as above to find c2. Once again, at that point, we can add 1 to the answer (since Michael will need to visit
room b), and repeat the process with the remainder of the string to the right of c2.

Official Solution (C++)
#include <iostream>
using namespace std;

int N, D, ans = 0;
string S;

int main() {
 cin >> N >> D >> S;
 int i = 0;
 // Loop until we break due to reaching the end of the string.
 while (i < N) {
 // Find start of next room (a1).
 while (S[i] == '#') i++;
 if (i >= N) break;
 ans++;
 // Find first wall past this room (a2 + 1).
 while (S[i] == '.') i++;
 // Find first wall past last room in range of this room (b2 + 1).
 i += D - 1;
 if (i >= N) break;
 while (S[i] == '#') i--;
 while (S[i] == '.') i++;
 // Find first wall past last room in range of that room (c2 + 1).
 i += D - 1;
 if (i >= N) break;
 while (S[i] == '#') i--;
 while (S[i] == '.') i++;
 }
 cout << ans << endl;
 return 0;
}

Woburn Challenge 2016-17: Round 1 (Solutions)

4

Problem J4/S2: Alucard’s Quest
Alucard actually has very little choice. In order to reach each chamber that contains an item, Alucard must necessarily
pass through all of the passageways between that chamber and the 1st chamber at some point. Furthermore, he never
has a reason to pass through any of the remaining passageways (those which are not between the 1st chamber and
any chamber containing an item). Therefore, it's clear exactly which set of chambers and passageways Alucard should
pass through at least once, regardless of the order in which he collects the K items.

For a given chamber i, let's try to determine if Alucard will have to visit it. Let A(i) be true if he will, and false
otherwise. If chamber i contains an item itself, then certainly A(i) = true. Otherwise, if we model the castle as a tree
rooted at the 1st chamber, then A(i) = true if and only if A(c) = true for at least one child c of chamber i. This is
because, in order to reach chamber c, Alucard will have to pass through chamber i.

How does this translate into the amount of magic power required in total?

For each chamber i such that i > 1 and A(i) = true, Alucard will need to use the passageway between i and its parent
at some point. Therefore, assuming we can compute the A values, we can add up then add up the monster counts in
these passageways connecting chambers which must be visited to yield the answer.

What remains is computing the
A values. A(i) is computed
based on chamber i and the A
values of i's children, meaning
we can recursively compute it
starting from the 1st chamber.
For convenience, we can pass
in the index of i's parent in the
recursive call so that we can
determine which of its
neighbours are its children
when iterating over them.

We can also tally up the total
answer during this process,
rather than iterating over all
nodes with true A values
afterwards.

Since each of the N chambers
is visited only once in the
recursion, the algorithm has a
time complexity of O(N). The
official solution given on the
right implements this idea.

Official Solution (C++)
#include <iostream>
#include <vector>
using namespace std;

int N, K, a, b, m, c, ans = 0;
bool item[200005] = {0};
vector<pair<int, int> > adj[200005];

// Returns true iff chamber i must be visited.
bool A(int i, int parent) {
 bool ret = item[i]; // Must be visited if it has an item.
 for (int j = 0; j < adj[i].size(); j++) {
 int c = adj[i][j].first;
 if (c != parent && A(c, i)) { // Must this child be visited?
 // Then chamber i must also be visited,
 ret = true;
 // and this passageway must be cleared.
 ans += adj[i][j].second;
 }
 }
 return ret;
}

int main() {
 cin >> N >> K;
 for (int i = 0; i < N - 1; i++) {
 cin >> a >> b >> m;
 adj[a].push_back(make_pair(b, m));
 adj[b].push_back(make_pair(a, m));
 }
 for (int i = 0; i < K; i++) {
 cin >> c;
 item[c] = true;
 }
 A(1, -1); // Recurse starting from the 1st chamber.
 cout << ans << endl;
 return 0;
}

Woburn Challenge 2016-17: Round 1 (Solutions)

5

Problem S3: Tricky’s Treats
Tricky's time can be spent either walking between houses or visiting them for treats. The trade-off between spending
more time walking to visit further-away houses versus having more time to visit more houses is difficult to manage.
It will be much more manageable if we can fix the time spent on one of these two activities, and optimize for the
other one.

After sorting the houses in increasing order of position, let's imagine that we'll decide that some house i will be the
furthest house that Tricky will visit. This immediately fixes the amount of time that he'll spend on walking at 2Pi
(he'll need to walk to position Pi and then back to position 0, and on the way he'll be able to freely visit any other
houses closer than house i). This leaves M – 2Pi time for visiting some subset of houses with indices from 1 to i.

This means that hi = floor((M – 2Pi) / T) houses can be visited. Clearly then, of the first i houses, the hi of them with
the largest C values should be chosen (or all i houses if hi ≥ i). If we consider each possible house i separately,
calculate hi, and find the largest min(i, hi) C values out of C1..i, we can come up with an answer in O(N2 log N) time.

This approach can be improved to
O(N log N) time by noticing that the
optimal set of houses for a given i
can be computed more efficiently
based on the optimal set of houses for
i – 1, rather than from scratch. We
can iterate i upwards from 1 to N,
while maintaining a priority queue of
the current optimal C values as well
as storing the sum of the values in
this queue. When we reach a new
house i, we can add Ci to the priority
queue (and add Ci to its sum), and
then we'll need to repeatedly pop the
smallest value from the priority
queue until it contains no more than
hi values (while similarly keeping the
sum of these values up to date).

For convenience of implementation,
we can negate all values stored in the
priority queue to allow easy removal
of its smallest value rather than its
largest one. In this way, the priority
queue will always store the largest
min(i, hi) C values out of the first i
values (as well as their sum), with
their sum being the optimal number
of treats which can be collected
assuming that house i is the furthest
house visited, and as such being a
candidate for the final answer.

Official Solution (C++)
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;

int N, M, T, prev = 0, sum = 0, ans = 0;
pair<int, int> H[100005];

int main() {
 priority_queue<int> Q;
 cin >> N >> M >> T;
 for (int i = 0; i < N; i++) {
 cin >> H[i].first >> H[i].second;
 }
 // Sort houses by increasing position.
 sort(H, H + N);
 // Consider each furthest house i to visit.
 for (int i = 0; i < N; i++) {
 int pos = H[i].first;
 int val = H[i].second;
 // Update time left to visit houses besides walking.
 M -= 2*(pos - prev);
 if (M < T) {
 break;
 }
 prev = pos;
 // Insert the new value and update the sum.
 Q.push(-val);
 sum += val;
 // Remove values until few enough to visit them all.
 while (T * Q.size() > M) {
 sum += Q.top();
 Q.pop();
 }
 ans = max(ans, sum);
 }
 cout << ans << endl;
 return 0;
}

Woburn Challenge 2016-17: Round 1 (Solutions)

6

Problem S4: TP
Computing expected values directly can be problematic, but they can often be computed based on probabilities of
events instead. For example, in the case of this problem, if we let Pi be the probability that exactly i different houses

will have been TP-ed after all M passes, then the expected number of different houses to be TP-ed is ∑
=

⋅
N

i
iPi

0
.

Now, how can we compute these P values? We can use dynamic programming. Let DP[p][h] be the probability that
exactly h houses will have been TP-ed after p passes. For starters, we know that DP[0][0] = 1, and DP[0][1..N] = 0.
From a given state (p, h), there are only 3 possible transitions to consider: whether the (p + 1)-th pass results in 0, 1,
or 2 additional houses getting TP-ed (leading to states (p + 1, h), (p + 1, h + 1), or (p + 1, h + 2)). We'll need to
compute the probability of each of these 3 transitions occurring. For starters, there are t = N(N – 1)/2 total possible
pairs of houses, and if h houses have been TP-ed so far, then h2 = N – h houses have not.

In order for zero new houses to be TP-ed, both targeted houses must have already been TP-ed. The number of such
houses is c0 = h(h – 1)/2. Therefore, the probability of this transition is c0 / t. As a result, we add DP[p][h] × c0 / t onto
DP[p + 1][h].

Similarly, there are c1 = h × h2 pairs of targeted
houses which would result in 1 new house
getting TP-ed, and there are c2 = h2(h2 – 1)/2
pairs which result in 2 new houses getting TP-
ed. In the same way, we can add DP[p][h] × c1 /
t onto DP[p + 1][h + 1], and DP[p][h] × c2 / t
onto DP[p + 1][h + 2].

Finally, once we've considered all states for p =
0...(M – 1) and h = 0..N, we'll have populated
the whole DP array. There are O(NM) states and
only a constant number (3) of transitions from
each state, meaning that the time complexity of
this algorithm is O(NM). For each i, Pi =
DP[M][i], so we can proceed to calculate the
expected value as described initially. This idea
is implemented here in the official solution.

This problem can also be solved in O(1) with
some more advanced math. For any given
house, N – 1 pairs of houses result in it getting
TP-ed on any given pass. Therefore, the
probability of it getting TP-ed on any given pass
is (N – 1) / t = (N – 1) / (N(N – 1)/2) = 2/N, and
the probability of it not getting TP-ed is
therefore 1 – 2/N. As such, the probability of
any given house not getting TP-ed at all across
all M passes is (1 – 2/N)M. Due to the property
of linear expectation, the expected number of
houses which won't get TP-ed at all is simply N
times that value. Thus, the expected number of
houses which will get TP-ed is N – N(1 – 2/N)M.

Official Solution (C++)
#include <algorithm>
#include <iomanip>
#include <iostream>
using namespace std;

int N, M;
long double DP[2005][4005];

int main() {
 cin >> N >> M;
 long long tot = (long long)N*(N - 1)/2;
 DP[0][0] = 1.0;
 for (int i = 0; i < M; i++) { // i passes done
 // j houses TP-d
 for (int j = 0; j <= min(i * 2, N); j++) {
 // k houses not TP-ed.
 int k = N - j;

 // TP 0 new houses.
 long long c = (long long)j*(j - 1)/2;
 DP[i + 1][j] += DP[i][j]*c / tot;

 // TP 1 new house.
 c = (long long)j * k;
 DP[i + 1][j + 1] += DP[i][j]*c / tot;

 // TP 2 new houses
 c = (long long)k*(k - 1)/2;
 DP[i + 1][j + 2] += DP[i][j]*c / tot;
 }
 }
 // Add up expected value.
 long double ans = 0;
 for (int i = 0; i <= min(M * 2, N); i++) {
 ans += i * DP[M][i];
 }
 cout << fixed << setprecision(6) << ans << endl;
 return 0;
}

