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Problem J1: A Spooky Season 
Output "sp", then have a loop which runs S times and outputs one 
"o" each time, and then finally output "ky". Remember to not 
output newlines in between these characters! 

 

 

Problem J2: Frankenstein’s Monster 
An important skill in solving problems like this one is interpreting 
the statement. The most important part of the statement is this: 
 

“A ‘word’ is a maximal consecutive sequence of non-period characters in the string. That is, each 
word is either preceded by a period or is at the start of the string. Similarly, each word is followed 
by a period or is at the end of the string.” 

 
This means that we should replace all substrings "Frankenstein" with "Frankenstein's.Monster" if and 
only if one of the follow is true: 

• it’s at the beginning of S (always followed by a period, except when it’s also at the end of S) 
• it’s both preceded and followed by a period 
• it’s at the end of S (always preceded by a period, except when it’s also at the beginning of S) 

We can solve this by finding all substrings Frankenstein and checking all these cases. Alternatively, this problem 
becomes a bit simpler if we start by augmenting the given string, adding one "." to the start and another "." to the 
end (we just have to remember to remove these at the end before outputting the answer). We then want to replace 
every occurrence of ".Frankenstein." with ".Frankenstein's.monster.". To find each occurrence, some 
programming languages provide a built-in function to search for a substring within a string. Alternatively, this can 
be done by looping over every character in the string and checking if the 14-character substring starting there is equal 
to ".Frankenstein.". Once an occurrence is found starting at index i, one way to replace it is to replace the whole 
string S with the concatenation of substrings S[1…(i – 1)] + ".Frankenstein's.monster." + S[(i + 14)…|S|] 
where |S| is the length of S. 

Official Solution (C++) 
#include <iostream> 
using namespace std; 
 
string s; 
 
int main() { 
  cin >> s; 
  s = "." + s + ".";  // Pad with periods for convenience. 
  while (true) { 
    int i = s.find(".Frankenstein."); 
    if (i == string::npos) break;  // No more occurences found. 
    s = s.substr(0, i) + ".Frankenstein's.monster." + s.substr(i + 14); 
  } 
  // Output the string with the padded periods removed. 
  cout << s.substr(1, s.length() - 2) << endl; 
  return 0; 
} 

Official Solution (C++) 
#include <iostream> 
using namespace std; 
 
int S; 
 
int main() { 
  cin >> S; 
  cout << "sp"; 
  for (int i = 0; i < S; i++) { 
    cout << "o"; 
  } 
  cout << "ky" << endl; 
  return 0; 
} 
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Problem J3/S1: Hide and Seek 
This problem can be approached greedily. If we consider the leftmost room a, Michael's leftmost chosen room b 
might as well be the rightmost possible room such that a and b are within D units of each other, since that'll cover 
not only room a, but as many more rooms to the right of a as possible. In particular, if room c is the rightmost room 
which is within D units of room b, then room b will cover all rooms between a and c (inclusive).  

Therefore, if we can determine the locations of these 3 rooms a, b, and c, then we can add room b to Michael's list of 
chosen rooms, and henceforth ignore room c and all rooms left of it, thereby reducing the problem to only the section 
of the hallway to the right of room c. At that point, we can repeat this process until there are no more rooms remaining 
to the right of room c. 

The first step is to find room a. Let's define a1 to be the leftmost character of room a, and a2 to be its rightmost 
character (and similarly for rooms b and c). a1 is simply the first "." in the floor plan. a2 is then the character before 
the first "#" after a1. 

The second step is to find room b. The furthest character in range of room a is a2 + D. If that character is a ".", then 
it's inside room b, and so b2 is the character before the first "#" after a2 + D. Otherwise, room b must be to the left, 
so b2 is the last "." before a2 + D. We don't need to find b1. 

The final step is to find room c. The furthest character in range of room b is b2 + D. We can repeat exactly the same 
process as above to find c2. Once again, at that point, we can add 1 to the answer (since Michael will need to visit 
room b), and repeat the process with the remainder of the string to the right of c2. 

 
Official Solution (C++) 
#include <iostream> 
using namespace std; 
 
int N, D, ans = 0; 
string S; 
 
int main() { 
  cin >> N >> D >> S; 
  int i = 0; 
  // Loop until we break due to reaching the end of the string. 
  while (i < N) { 
    // Find start of next room (a1). 
    while (S[i] == '#') i++; 
    if (i >= N) break; 
    ans++; 
    // Find first wall past this room (a2 + 1). 
    while (S[i] == '.') i++; 
    // Find first wall past last room in range of this room (b2 + 1). 
    i += D - 1; 
    if (i >= N) break; 
    while (S[i] == '#') i--; 
    while (S[i] == '.') i++; 
    // Find first wall past last room in range of that room (c2 + 1). 
    i += D - 1; 
    if (i >= N) break; 
    while (S[i] == '#') i--; 
    while (S[i] == '.') i++; 
  } 
  cout << ans << endl; 
  return 0; 
} 
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Problem J4/S2: Alucard’s Quest 
Alucard actually has very little choice. In order to reach each chamber that contains an item, Alucard must necessarily 
pass through all of the passageways between that chamber and the 1st chamber at some point. Furthermore, he never 
has a reason to pass through any of the remaining passageways (those which are not between the 1st chamber and 
any chamber containing an item). Therefore, it's clear exactly which set of chambers and passageways Alucard should 
pass through at least once, regardless of the order in which he collects the K items. 

For a given chamber i, let's try to determine if Alucard will have to visit it. Let A(i) be true if he will, and false 
otherwise. If chamber i contains an item itself, then certainly A(i) = true. Otherwise, if we model the castle as a tree 
rooted at the 1st chamber, then A(i) = true if and only if A(c) = true for at least one child c of chamber i. This is 
because, in order to reach chamber c, Alucard will have to pass through chamber i. 

How does this translate into the amount of magic power required in total? 

For each chamber i such that i > 1 and A(i) = true, Alucard will need to use the passageway between i and its parent 
at some point. Therefore, assuming we can compute the A values, we can add up then add up the monster counts in 
these passageways connecting chambers which must be visited to yield the answer. 

What remains is computing the 
A values. A(i) is computed 
based on chamber i and the A 
values of i's children, meaning 
we can recursively compute it 
starting from the 1st chamber. 
For convenience, we can pass 
in the index of i's parent in the 
recursive call so that we can 
determine which of its 
neighbours are its children 
when iterating over them. 

We can also tally up the total 
answer during this process, 
rather than iterating over all 
nodes with true A values 
afterwards. 

Since each of the N chambers 
is visited only once in the 
recursion, the algorithm has a 
time complexity of O(N). The 
official solution given on the 
right implements this idea. 

 

  

Official Solution (C++) 
#include <iostream> 
#include <vector> 
using namespace std; 
 
int N, K, a, b, m, c, ans = 0; 
bool item[200005] = {0}; 
vector<pair<int, int> > adj[200005]; 
 
// Returns true iff chamber i must be visited. 
bool A(int i, int parent) { 
  bool ret = item[i];  // Must be visited if it has an item. 
  for (int j = 0; j < adj[i].size(); j++) { 
    int c = adj[i][j].first; 
    if (c != parent && A(c, i)) { // Must this child be visited? 
      // Then chamber i must also be visited, 
      ret = true; 
      // and this passageway must be cleared. 
      ans += adj[i][j].second;   
    } 
  } 
  return ret; 
} 
 
int main() { 
  cin >> N >> K; 
  for (int i = 0; i < N - 1; i++) { 
    cin >> a >> b >> m; 
    adj[a].push_back(make_pair(b, m)); 
    adj[b].push_back(make_pair(a, m)); 
  } 
  for (int i = 0; i < K; i++) { 
    cin >> c; 
    item[c] = true; 
  } 
  A(1, -1);  // Recurse starting from the 1st chamber. 
  cout << ans << endl; 
  return 0; 
} 
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Problem S3: Tricky’s Treats 
Tricky's time can be spent either walking between houses or visiting them for treats. The trade-off between spending 
more time walking to visit further-away houses versus having more time to visit more houses is difficult to manage. 
It will be much more manageable if we can fix the time spent on one of these two activities, and optimize for the 
other one. 

After sorting the houses in increasing order of position, let's imagine that we'll decide that some house i will be the 
furthest house that Tricky will visit. This immediately fixes the amount of time that he'll spend on walking at 2Pi 
(he'll need to walk to position Pi and then back to position 0, and on the way he'll be able to freely visit any other 
houses closer than house i). This leaves M – 2Pi time for visiting some subset of houses with indices from 1 to i.  

This means that hi = floor((M – 2Pi) / T) houses can be visited. Clearly then, of the first i houses, the hi of them with 
the largest C values should be chosen (or all i houses if hi ≥ i). If we consider each possible house i separately, 
calculate hi, and find the largest min(i, hi) C values out of C1..i, we can come up with an answer in O(N2 log N) time. 

This approach can be improved to 
O(N log N) time by noticing that the 
optimal set of houses for a given i 
can be computed more efficiently 
based on the optimal set of houses for 
i – 1, rather than from scratch. We 
can iterate i upwards from 1 to N, 
while maintaining a priority queue of 
the current optimal C values as well 
as storing the sum of the values in 
this queue. When we reach a new 
house i, we can add Ci to the priority 
queue (and add Ci to its sum), and 
then we'll need to repeatedly pop the 
smallest value from the priority 
queue until it contains no more than 
hi values (while similarly keeping the 
sum of these values up to date). 

For convenience of implementation, 
we can negate all values stored in the 
priority queue to allow easy removal 
of its smallest value rather than its 
largest one. In this way, the priority 
queue will always store the largest 
min(i, hi) C values out of the first i 
values (as well as their sum), with 
their sum being the optimal number 
of treats which can be collected 
assuming that house i is the furthest 
house visited, and as such being a 
candidate for the final answer. 

 

Official Solution (C++) 
#include <algorithm> 
#include <iostream> 
#include <queue> 
using namespace std; 
 
int N, M, T, prev = 0, sum = 0, ans = 0; 
pair<int, int> H[100005]; 
 
int main() { 
  priority_queue<int> Q; 
  cin >> N >> M >> T; 
  for (int i = 0; i < N; i++) { 
    cin >> H[i].first >> H[i].second; 
  } 
  // Sort houses by increasing position. 
  sort(H, H + N); 
  // Consider each furthest house i to visit. 
  for (int i = 0; i < N; i++) { 
    int pos = H[i].first; 
    int val = H[i].second; 
    // Update time left to visit houses besides walking. 
    M -= 2*(pos - prev); 
    if (M < T) { 
      break; 
    } 
    prev = pos; 
    // Insert the new value and update the sum. 
    Q.push(-val); 
    sum += val; 
    // Remove values until few enough to visit them all. 
    while (T * Q.size() > M) { 
      sum += Q.top(); 
      Q.pop(); 
    } 
    ans = max(ans, sum); 
  } 
  cout << ans << endl; 
  return 0; 
} 
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Problem S4: TP 
Computing expected values directly can be problematic, but they can often be computed based on probabilities of 
events instead. For example, in the case of this problem, if we let Pi be the probability that exactly i different houses 

will have been TP-ed after all M passes, then the expected number of different houses to be TP-ed is ∑
=

⋅
N

i
iPi

0
. 

Now, how can we compute these P values? We can use dynamic programming. Let DP[p][h] be the probability that 
exactly h houses will have been TP-ed after p passes. For starters, we know that DP[0][0] = 1, and DP[0][1..N] = 0. 
From a given state (p, h), there are only 3 possible transitions to consider: whether the (p + 1)-th pass results in 0, 1, 
or 2 additional houses getting TP-ed (leading to states (p + 1, h), (p + 1, h + 1), or (p + 1, h + 2)). We'll need to 
compute the probability of each of these 3 transitions occurring. For starters, there are t = N(N – 1)/2 total possible 
pairs of houses, and if h houses have been TP-ed so far, then h2 = N – h houses have not. 

In order for zero new houses to be TP-ed, both targeted houses must have already been TP-ed. The number of such 
houses is c0 = h(h – 1)/2. Therefore, the probability of this transition is c0 / t. As a result, we add DP[p][h] × c0 / t onto 
DP[p + 1][h]. 

Similarly, there are c1 = h × h2 pairs of targeted 
houses which would result in 1 new house 
getting TP-ed, and there are c2 = h2(h2 – 1)/2 
pairs which result in 2 new houses getting TP-
ed. In the same way, we can add DP[p][h] × c1 / 
t onto DP[p + 1][h + 1], and DP[p][h] × c2 / t 
onto DP[p + 1][h + 2]. 

Finally, once we've considered all states for p = 
0...(M – 1) and h = 0..N, we'll have populated 
the whole DP array. There are O(NM) states and 
only a constant number (3) of transitions from 
each state, meaning that the time complexity of 
this algorithm is O(NM). For each i, Pi = 
DP[M][i], so we can proceed to calculate the 
expected value as described initially. This idea 
is implemented here in the official solution. 

This problem can also be solved in O(1) with 
some more advanced math. For any given 
house, N – 1 pairs of houses result in it getting 
TP-ed on any given pass. Therefore, the 
probability of it getting TP-ed on any given pass 
is (N – 1) / t = (N – 1) / (N(N – 1)/2) = 2/N, and 
the probability of it not getting TP-ed is 
therefore 1 –  2/N. As such, the probability of 
any given house not getting TP-ed at all across 
all M passes is (1 – 2/N)M. Due to the property 
of linear expectation, the expected number of 
houses which won't get TP-ed at all is simply N 
times that value. Thus, the expected number of 
houses which will get TP-ed is N – N(1 – 2/N)M. 

Official Solution (C++) 
#include <algorithm> 
#include <iomanip> 
#include <iostream> 
using namespace std; 
 
int N, M; 
long double DP[2005][4005]; 
 
int main() { 
  cin >> N >> M; 
  long long tot = (long long)N*(N - 1)/2; 
  DP[0][0] = 1.0; 
  for (int i = 0; i < M; i++) {  // i passes done 
    // j houses TP-d 
    for (int j = 0; j <= min(i * 2, N); j++) { 
      // k houses not TP-ed. 
      int k = N - j; 
 
      // TP 0 new houses. 
      long long c = (long long)j*(j - 1)/2; 
      DP[i + 1][j] += DP[i][j]*c / tot; 
 
      // TP 1 new house. 
      c = (long long)j * k; 
      DP[i + 1][j + 1] += DP[i][j]*c / tot; 
 
      // TP 2 new houses 
      c = (long long)k*(k - 1)/2; 
      DP[i + 1][j + 2] += DP[i][j]*c / tot; 
    } 
  } 
  // Add up expected value. 
  long double ans = 0; 
  for (int i = 0; i <= min(M * 2, N); i++) { 
    ans += i * DP[M][i]; 
  } 
  cout << fixed << setprecision(6) << ans << endl; 
  return 0; 
} 


