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Problem J1: Telling Time 

Given a positive integer G and a list of N other positive integers, 

this question asks to find the number of integers in the list which 

are multiples of G. The solution is to just loop through the list 

and check if each integer is a multiple of G. If so, increment a 

running counter variable. 

Checking if a number F is a multiple of G can be done with the 

modulo (or remainder) operator in most programming languages 

(the % operator in C++/Java/Python, for instance). That is, F is a 

multiple of G if and only if F % G is equal to 0. Since we loop 

through an array of size N, this runs in O(N). 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int N, G, F, ans = 0; 

 

int main() { 

  cin >> N >> G; 

  for (int i = 0; i < N; i++) { 

    cin >> F; 

    if (F % G == 0) ans++; 

  } 

  cout << ans << endl; 

  return 0; 

} 

 

Problem J2: Mission Briefing 

Given a string, we want to count how many substrings 

from the set ‘001’...‘009’ occur. By reading the question 

carefully, one should notice that multiple instances of the 

same string should be counted only once. Namely, 

‘001.abc.001a’ should only count 1 towards the final 

answer. Furthermore, from the sample input and output, 

one should understand that the string can be surrounded by 

anything, including other digits. Namely, an occurrence of 

‘.20001.’ should still be counted as 001. We should 

therefore not assume that strings are surrounded by 

punctuation. Finally, we should not consider ‘000’ to be a 

valid agent. 

Assuming the string has 0-based indices, one way to solve 

the problem is keep track of occurrences with a Boolean 

array (accessible from indices 1 to 9) initialized to false. 

We loop through the input string, starting at index 2 and 

ending at index N–1, where N is the length of the string. 

We check the last 2 indices to make sure both of them are 

the digit ‘0’, and then check to make sure the current index 

is a digit from ‘1’ to ‘9’ (most programming languages 

support directly comparing ASCII characters). If so, set 

the corresponding Boolean variable to true. To get the 

answer, count the number of true values in the Boolean 

array. This O(N) solution is implemented on the right. 

An alternate solution is to just use string searching 

functions in the standard library of your programming 

language (e.g. string::find() in C++), which should take 

O(N) per call on the length of the string. We have to make 

9 calls, one for each digit from 1 through 9. 

 

 

 

 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

string s; 

int ans = 0; 

bool found[10]; 

 

int main() { 

  cin >> s; 

  for (int i = 2; i < s.length(); i++) { 

    if (s[i-2] == '0' && s[i-1] == '0' 

        && s[i] >= '1' && s[i] <= '9') { 

      found[s[i] - '0'] = true; 

    } 

  } 

  for (int i = 1; i <= 9; i++) { 

    if (found[i]) { 

      ans++; 

    } 

  } 

  cout << ans << endl; 

  return 0; 

} 



Woburn Challenge 2015-16: Round 4 (Solutions) 

Problem J3/S1: Shootout 

We are given N henchmen and M doors 

located at distinct positions on the number 

line. Henchman j is in Bond’s line of sight if 

and only if every door i with Di value less 

than Hj is opened. That is, for the i-th line of 

output, we should count the number of 

henchmen such that no D value from i+1 to 

M is greater than H. To illustrate the intended 

computations, a naïve solution is given here 

which runs in O(NM2). 

This solution is only meant to be given only 

3/17 of the points (through the first subtask, 

where N, M ≤ 100, so NM2 is no larger than 

1003
 = 1,000,000). The second subtask was 

designed for various O(MN log N) solutions 

which we will not discuss here.

Naïve Solution - O(NM2) 

#include <iostream> 

using namespace std; 

 

int N, M, H[200005], D[200005]; 

 

int main() { 

  cin >> N >> M; 

  for (int i = 0; i < N; i++) cin >> H[i]; 

  for (int i = 0; i < M; i++) cin >> D[i]; 

  for (int i = 0; i < M; i++) { 

    int ans = 0; 

    for (int j = 0; j < N; j++) { 

      bool blocked = false; 

      for (int k = i + 1; k < M; k++) 

        if (D[i] < H[j]) blocked = true; 

      if (!blocked) ans++; 

    } 

    cout << ans << endl; 

  } 

  return 0; 

}

 

For up to the third subtask, we can go for an O(NM) solution which eliminates the innermost for-loop of k. How? 

Observe that the inner loop is asking the question “does there exist a value in D[(i+1)…M] which is less than the 

current H[j]?” This is actually equivalent to asking if the minimum value in D[(i+1)…M] is less than H[i]. Let the 

array minD[] be such that minD[i] stores the minimum D value from i to M. To compute this array, just loop 

backwards from M to 1 and store the minimum of the minimum so far with the current D value. This simple solution 

is given below and is given 11/17 of the points. 

 

Precomputing Minimums – O(NM) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

int N, M, H[200005], D[200005], minD[200005]; 

 

int main() { 

  cin >> N >> M; 

  for (int i = 0; i < N; i++) cin >> H[i]; 

  for (int i = 0; i < M; i++) cin >> D[i]; 

  minD[M] = 1000000001; 

  for (int i = M - 1; i >= 0; i--) 

    minD[i] = min(minD[i + 1], D[i]); 

  for (int i = 0; i < M; i++) { 

    int ans = 0; 

    for (int j = 0; j < N; j++) 

      if (minD[i + 1] > H[j]) ans++; 

    cout << ans << endl; 

  } 

  return 0; 

} 

 

It is also possible to get 11/17 points with a more complex solution than the code below, which involves sorting, 

searching, and erasing from an array. 
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For a full solution, lets start by sorting the N henchmen in increasing order of position, which can be done using any 

O(N log N) time sorting algorithm. Let’s similarly sort the M doors in O(M log M) time – however in this case, we’ll 

need to keep each door's original index associated with its position after the sort (as opposed to only sorting the M 

door positions independently, where info about the original position is lost). To accomplish this, we can represent 

each door as a pair of integers (position, original index), and compare these pairs by only their position value in the 

sorting algorithm. To use this with the built-in sorting function of certain languages, we may need to define a custom 

class and/or comparator, or use something like C++’s std::pair like the official solution below. 

Now, as we simulate opening all of the doors in order, we’d like to maintain one running index for each of the two 

sorted lists. Firstly, we need to keep track of the index h of the current first henchmen not in Bond’s line of fire (or 

N + 1 if there's no such henchman). Secondly, we need the index d of the current first closed door (or M + 1 if there’s 

no such door). We can observe that exactly the first h – 1 sorted henchmen will be in Bond’s line of fire, such that 

the h-th henchmen is the first one further from Bond than the d-th door in the sorted list. 

When door i is opened, we can update d by repeatedly incrementing it as long as it’s no larger than M, and the original 

index of the d-th door in the sorted list is smaller than or equal to i (note that d never decreases). When a given door 

is opened, d might stay the same or be incremented many times, but over the course of the entire simulation, it will 

only be incremented M times, so these updates will take O(M) time in total. 

After the index d has been updated for door i, we can use it to update h accordingly (which will give us the i-th 

answer). Similarly to the above approach, we can 

repeatedly increment h as long as it’s no larger than 

N, and the index of the h-th henchman in the sorted 

list is before the index of the d-th door in the sorted 

list. Likewise, i will be incremented a total of N 

times throughout the entire simulation, which can 

be handled in O(N) time. 

The sorting of the two arrays dominate over the 

simulation, so the overall running time for the code 

given on the right is O(N log N + M log M). 

Alternatively, we don’t have to keep track of the h 

value. In this case, the second while-loop may be 

replaced with a binary search on the sorted array of 

henchmen, querying for the first henchman 

position which is not less than the position of the 

current door. This position is the answer, since all 

henchmen before will also be in the line of sight. 

Alternatively, we can put all henchmen and doors 

into the same array of pairs and sort them by 

position (but still remembering the index of each 

door). When we open a door, we erase the door i 

from the sorted array and loop d upwards until we 

skip over all of the erased door while counting the 

number of henchmen encountered in the same loop. 

The sorting also dominates in this variation, but as 

we are sorting a list of size N + M, the solution will 

run in O((N+M) log(N + M)) time. 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

#include <utility> 

#include <vector> 

using namespace std; 

 

int N, M, position, h = 0, d = 0; 

vector< int > H; 

vector< pair<int, int> > D; 

 

int main() { 

  cin >> N >> M; 

  for (int i = 0; i < N; i++) { 

    cin >> position; 

    H.push_back(position); 

  } 

  for (int i = 0; i < M; i++) { 

    cin >> position; 

    D.push_back(make_pair(position, i)); 

  } 

  D.push_back(make_pair(1000000001, M)); 

  sort(H.begin(), H.end()); 

  sort(D.begin(), D.end()); 

  for (int i = 0; i < M; i++) { 

    while (d < M && D[d].second <= i) d++; 

    while (h < N && H[h] < D[d].first) h++; 

    cout << h << endl; 

  } 

  return 0; 

} 
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Problem J4: Target Practice 

We have N regions of a target (1 circle surrounded by N – 1 rings) and M coordinates. We want to assign N given 

point values to the N regions such that the total score is minimized (and then again so it’s maximized). The score is 

defined as the sum of the products of each ring’s score with the number of shots that land in each ring. Formally, the 

problem asks to find the minimum and maximum possible cross products between the hit-counts of each ring and 

the point value we assign to each ring. By definition, the cross-product of two size N arrays A and B is equal to the 

sum A[1]×B[1] + A[2]×B[2] + … + A[N] ×B[N]. 

By the simple equation of a circle centered at the origin, we know that a shot i lands in ring j iff sqrt(Xi
2 + Yi

2) is 

strictly less than or equal to the outer radius Rj, and strictly greater than Rj – 1 (if j > 1). To avoid any possible precision 

issues with floating point numbers (in cases where a shot lands very close to the border of a ring), this process can 

be handled entirely using (64-bit) integers, by comparing squared distances instead (for example, comparing X2 + Y2 

against R2). The hit counts can be precomputed naïvely by looping through each of the M rings, and then counting 

how many of the N darts land in the ring using the formula above. This will have a running time of O(NM). Then, 

we can try naïvely permuting all N! orderings of P and assign them to each ring, and then for each permutation 

computing the cross product of the current permutation and the hit-counts of each ring. Doing this should pass the 

first subtask in O(NM + N!) = O(N!) time (since N ≤ 10, so N! ≤ 10! = 3,628,800), and is thus given 6/40 points. 

Suppose we already have the hit-counts for 

each ring. Now intuitively, in order to 

maximize Bond's score, we should assign 

the largest P values to the rings which are 

hit by the largest number of shots, and the 

smallest P values to those which are hit the 

least (and vice versa to minimize his score). 

This is as easy as sorting P and the counts 

in increasing order, calculating the cross-

product (for the maximum), then reversing 

P and calculating the cross-products again 

(for the minimum). Since each sort takes N 

log N, we’ve reduced the time complexity 

to O(N log N + NM) = O(NM). This is 

sufficient to pass all but the last set of cases, 

obtaining 17/35 points. However, to get full 

marks, we must handle the bottleneck of 

computing the hit-counts efficiently. 

If we just consider the rings in terms of their 

distances, then we actually just get a sorted 

array of integers. To find where a point 

lands, we want to find the first R value 

which is not less than the distance of the 

shot from the origin. Since the distances are 

sorted, we can use binary search in O(log N) 

time to pinpoint the exact position where it 

lands. Across M shots, the time complexity 

will be O(M log N). So, the overall solution 

will run in O(M log N + N log N). 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

int N, M, P[100005], cnt[1000005] = {0}, ans = 0; 

long long R[100005], X[1000005], Y[1000005]; 

 

int main() { 

  ios_base::sync_with_stdio(false); 

  cin >> N >> M; 

  for (int i = 0; i < N; i++) { 

    cin >> R[i]; 

    R[i] = R[i] * R[i]; 

  } 

  for (int i = 0; i < N; i++) cin >> P[i]; 

  for (int i = 0; i < M; i++) { 

    cin >> X[i] >> Y[i]; 

    long long sqdist = X[i] * X[i] + Y[i] * Y[i]; 

    cnt[lower_bound(R, R + N, sqdist) - R]++; 

  } 

  sort(P, P + N); 

  sort(cnt, cnt + N); 

  for (int i = 0; i < N; i++) { 

    ans += cnt[i] * P[N – i - 1]; 

  } 

  cout << ans << endl; 

  ans = 0;  

  for (int i = 0; i < N; i++) { 

    ans += cnt[i] * P[i]; 

  } 

  cout << ans << endl;  

  return 0; 

} 
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Problem S2: World Tour 

The cities and flights represent a directed graph with N nodes, each with 1 outgoing edge. For each “component” in 

the graph (a maximal set of nodes which would be connected to one another if the graph was undirected), the graph 

structure guarantees that there must be exactly one cycle, with the remaining nodes in the component connecting to 

that cycle (possible indirectly). An obvious solution would be to start at each node and follow the path until we have 

reached a node that is already visited, and then stop. Doing so for each node yields an O(N2) solution which is given 

7/23 of the points. To improve on this, we can process one component at a time, finding its cycle and then handling 

all of its non-cyclic nodes. 

We can iterate over the nodes from 1 to 

N. If the answer Ai for node i hasn't been 

computed yet, then we’ll process node i's 

entire component right away. The first 

step is to locate any node which is part of 

the component's cycle. This can be done 

by repeatedly following edges forward 

from i, marking nodes as having been 

visited, until a node j is reached which 

has already been visited – this node must 

be part of the cycle. Next, we need to get 

the cycle’s size s (the number of nodes 

which are part of it). We can do this by 

repeatedly following edges forward from 

j until we return j, and counting the 

number of nodes visited along the way. 

Now, for each node a in the cycle, Aa = s 

(if Jaws starts in the cycle, he’ll just visit 

all s nodes in the cycle). For each non-

cyclic node b which is an additional 

distance of d away from any node in the 

cycle, Ab = d + s (Jaws will visit d non-

cycle nodes on his way to the cycle, and 

then visit all s nodes in the cycle). As 

such, we can compute the answers for all 

nodes in the component in linear time 

using breadth-first search, by pushing all 

the nodes in the cycle onto a queue, and 

then expanding outwards from the cycle. 

If we’re processing node x and there’s an 

edge from a non-cycle node y to x, then 

we can set Ay = Ax + 1 and push y onto 

the queue. Note that this will require 

precomputing the list of incoming edges 

for each node. At the end, we can output 

the computed values A1..N. The total time 

complexity of this algorithm is O(N). 

Official Solution (C++) 

#include <iostream> 

#include <queue> 

#include <vector> 

using namespace std; 

 

int N, C[500005], ans[500005] = {0}; 

bool vis[500005] = {0}; 

vector<int> in[500005]; 

queue< pair<int, int> > q; 

 

int main() { 

  ios_base::sync_with_stdio(false); 

  cin >> N; 

  for (int i = 1; i <= N; i++) { 

    cin >> C[i]; 

    in[C[i]].push_back(i); 

  } 

  for (int i = 1; i <= N; i++) { 

    if (ans[i] > 0) continue; 

    int curr; 

    for (curr = i; !vis[curr]; curr = C[curr]) 

      vis[curr] = true; 

    int start = curr, cyclelen = 0, dist; 

    do { 

      cyclelen++; 

      q.push(make_pair(curr, 0)); 

      ans[curr] = -1; 

      curr = C[curr]; 

    } while (curr != start); 

    while (!q.empty()) { 

      curr = q.front().first; 

      dist = q.front().second; 

      q.pop(); 

      if (dist == 0) dist = cyclelen; 

      ans[curr] = dist; 

      for (int j = 0; j < in[curr].size(); j++) 

        if (!ans[in[curr][j]]) 

          q.push(make_pair(in[curr][j], dist + 1)); 

    } 

  } 

  for (int i = 1; i <= N; i++) 

    cout << ans[i] << endl; 

  return 0; 

} 
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Problem S3: Coded Paper 

We are given a 2 by N matrix of numbers and want 

to maximize their sum by replacing any number of 

rectangular regions on the matrix with other 

rectangles, each of which has just the number R 

written on it. For the first subtask where N ≤ 2, we 

can manually generate every possible configuration 

of rectangle placements. For the second subtask 

where N ≤ 6, we can do some kind of brute force to 

find the answer (possibly using backtracking to 

repeatedly place rectangles of all possible sizes in 

all possible configurations). 

For an answer that gets full marks, let’s first 

consider the simple case in which R is non-negative. 

In this case, there's no benefit to using larger 

cardboard rectangles – they might as well all be 1 

by 1 squares to maximize the number of numbers 

we can replace. In particular, we should just 

greedily cover every cell with value Ci, j less than R. 

When R is instead negative, dynamic programming 

is required. Let DP[i][s] be the maximum possible 

sum of values in the first i columns, where s is an 

integer between 0 and 4 describing the state of any 

ongoing cardboard rectangles. In particular, the 

following possibilities exist at any column i: 

0. No ongoing rectangles 

1. Ongoing height-1 rectangle in row 1 

2. Ongoing height-1 rectangle in row 2 

3. Ongoing height-1 rectangles in both rows 

4. Ongoing height-2 rectangle spanning both rows 

DP[i][s] is computed by considering each possible 

previous rectangle state s’ (between 0 and 4), and 

maximizing the value of: DP[i–1][s’] + {sum of 

visible cells in column i given the rectangles 

described by s} + R×{number of new rectangles 

being started going from state s’ to s}. 

This requires some case analysis of the 5 possible 

rectangle states and the transitions between pairs of 

them. These base cases and transition cases are self-

explanatory in the implementation given on the left. 

The final answer is stored at case 0 of the last 

colunm, where there are no ongoing rectangles. The 

time complexity of this algorithm is O(N). 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

int N, R, d, ans = 0, C[100005][2], 

DP[100005][5]; 

 

void setmax(int & a, int b) { a = max(a, b); } 

 

int main() { 

  cin >> N >> R; 

  for (int j = 0; j < 2; j++) 

    for (int i = 0; i < N; i++) 

      cin >> C[i][j]; 

  if (R >= 0) { 

    for (int i = 0; i < N; i++) 

      for (int j = 0; j < 2; j++) 

        ans += max(C[i][j], R); 

    cout << ans << endl; 

  } else { 

    for (int i = 0; i <= N; i++) 

      for (int j = 0; j < 5; j++) 

        DP[i][j] = -1000000001; 

    DP[0][0] = 0; 

    DP[0][1] = DP[0][2] = DP[0][4] = R; 

    DP[0][3] = 2*R; 

    for (int i = 0; i < N; i++) { 

      d = DP[i][0] + C[i][0] + C[i][1]; //case 0 

      setmax(DP[i + 1][0], d); 

      setmax(DP[i + 1][1], d + R); 

      setmax(DP[i + 1][2], d + R); 

      setmax(DP[i + 1][3], d + 2*R); 

      setmax(DP[i + 1][4], d + R); 

      d = DP[i][1] + C[i][1];           //case 1 

      setmax(DP[i + 1][0], d); 

      setmax(DP[i + 1][1], d); 

      setmax(DP[i + 1][2], d + R); 

      setmax(DP[i + 1][3], d + R); 

      setmax(DP[i + 1][4], d + R); 

      d = DP[i][2] + C[i][0];           //case 2 

      setmax(DP[i + 1][0], d); 

      setmax(DP[i + 1][1], d + R); 

      setmax(DP[i + 1][2], d); 

      setmax(DP[i + 1][3], d + R); 

      setmax(DP[i + 1][4], d + R); 

      d = DP[i][3];                     //case 3  

      setmax(DP[i + 1][0], d); 

      setmax(DP[i + 1][1], d); 

      setmax(DP[i + 1][2], d); 

      setmax(DP[i + 1][3], d); 

      setmax(DP[i + 1][4], d + R); 

      d = DP[i][4];                     //case 4 

      setmax(DP[i + 1][0], d); 

      setmax(DP[i + 1][1], d + R); 

      setmax(DP[i + 1][2], d + R); 

      setmax(DP[i + 1][3], d + 2*R); 

      setmax(DP[i + 1][4], d); 

    } 

    cout << DP[N][0] << endl; 

  } 

  return 0; 

} 
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Problem S4: Stakeout 

For starters, we need to determine which buildings each agent can see. After sorting the positions of the buildings in 

O(N log N) time, we can determine the interval of buildings that each agent i can cover in O(log N) time using binary 

search, by searching for the first building whose position is no smaller than Ai - Ri, and the last building whose 

position is no greater than Ai + Ri. 

As for answering the questions, we can observe that 2i > 21 + 22 + ... + 2i–1, meaning that for any i, hiring any subset 

of agents with indices smaller than i is worth it if it means we can avoid hiring agent i. This suggests the approach of 

iterating over the agents downwards from M to 1, and for each one, only hiring them if necessary – in other words, 

if skipping that agent and hiring all of the agents with indices smaller than i wouldn’t yield sufficient coverage of the 

buildings. 

To implement this approach, we can start by assuming that we’ll hire all M agents, and then for each agent i, we can 

try removing them and testing if each building is still covered by enough agents – if not, agent i must be necessary, 

so we must re-insert them into the set of hired agents and add 2i onto the total necessary cost (assuming that we’ve 

precomputed the values of 2i modulo 109 + 7 for i = 1..M). If even hiring all M agents to start with isn’t sufficient, 

then the answer can immediately be determined to be –1. 

What remains is being able to execute the above operations efficiently. In particular, we must be able to insert and 

remove agents from the set of hired agents, and test if all buildings are in sight of at least Ci hired agents. If we 

imagine an array S such that Si is the number of hired agents that building S is in sight of, then these operations equate 

to adding 1 to an interval of S values, subtracting 1 from an interval of S values, and determining the minimum S 

value in the array. 

Now, each of these operations can be handled by a segment tree with lazy propagation in O(log N) time. Each node 

in the tree should store the minimum value in its interval, as well as a lazy value of how much should be added to (or 

subtracted from) its entire interval. Conveniently, adding a constant value c to every index in an interval results in 

that interval's minimum value also increasing by c. 

For each question, we hire all of the agents and then iterate over all of them in an attempt to remove them, performing 

one or two segment tree operations each time. Therefore, the total time complexity is O((N + QM) log N). 

Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

const int LIM = 300005, MOD = 1000000007; 

 

int N, M, Q, A, R, C, total_cost = 0; 

int P[LIM], PL[LIM], PH[LIM], pow2[LIM], cov[LIM]; 

int tree[4 * LIM], lazy[4 * LIM]; 

 

void build(int i, int l, int h) { 

  if (l + 1 == h) { 

    tree[i] = cov[l]; 

  } else { 

    int m = (l + h)/2; 

    build(2*i + 1, l, m); 

    build(2*i + 2, m, h); 

    tree[i] = min(tree[2*i + 1], tree[2*i + 2]); 

    lazy[i] = 0; 

  } 

} 

 

http://wcipeg.com/wiki/Segment_tree#Lazy_propagation
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void propagate(int i) { 

  tree[2*i + 1] += lazy[i]; 

  lazy[2*i + 1] += lazy[i]; 

  tree[2*i + 2] += lazy[i]; 

  lazy[2*i + 2] += lazy[i]; 

  lazy[i] = 0; 

} 

 

int query(int i, int tl, int th, int ql, int qh) { 

  if (ql <= tl && qh >= th) return tree[i]; 

  propagate(i); 

  int tm = (tl + th)/2, ret = 1000000001; 

  if (ql < tm && qh > tl) ret = min(ret, query(2*i + 1, tl, tm, ql, qh)); 

  if (ql < th && qh > tm) ret = min(ret, query(2*i + 2, tm, th, ql, qh)); 

  return ret; 

} 

 

void update(int i, int tl, int th, int ql, int qh) { 

  if (ql <= tl && qh >= th) { 

    tree[i]--; lazy[i]--; 

    return; 

  } 

  if (tl + 1 == th) return; 

  propagate(i); 

  int tm = (tl + th)/2; 

  if (ql < tm && qh > tl) update(2*i + 1, tl, tm, ql, qh); 

  if (ql < th && qh > tm) update(2*i + 2, tm, th, ql, qh); 

  tree[i] = min(tree[2*i + 1], tree[2*i + 2]); 

} 

 

int main() { 

  ios_base::sync_with_stdio(false); 

  cin >> N >> M >> Q; 

  for (int i = 0; i < N; i++) cin >> P[i]; 

  sort(P, P + N); 

  pow2[0] = 1; 

  for (int i = 0; i < M; i++) { 

    cin >> A >> R; 

    PL[i] = lower_bound(P, P + N, A - R) - P; 

    PH[i] = upper_bound(P, P + N, A + R) - P; 

    cov[PL[i]]++; cov[PH[i]]--; 

    pow2[i + 1] = (pow2[i] * 2) % MOD; 

    total_cost = (total_cost + pow2[i + 1]) % MOD; 

  } 

  int init_min = cov[0]; 

  for (int i = 1; i < N; i++) { 

    cov[i] += cov[i - 1]; 

    init_min = min(init_min, cov[i]); 

  } 

  while (Q--) { 

    cin >> C; 

    if (C > init_min) { 

      cout << -1 << endl; 

      continue; 

    } 

    int ans = total_cost; 

    build(0, 0, N); 

    for (int i = M - 1; i >= 0; i--) { 

      if (PL[i] == PH[i] || query(0, 0, N, PL[i], PH[i]) > C) { 

        ans -= pow2[i + 1]; 

        if (ans < 0) ans += MOD; 

        update(0, 0, N, PL[i], PH[i]); 

      } 

    } 

    cout << ans << endl; 

  } 

  return 0; 

} 


