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Problem J1: Battle Predictions 

As a basic implementation problem, the key is to 

read the statement very carefully. In this case, it 

is simply a matter of comparing the correct 

values in the input with each other and not 

getting mixed up with what each variable means. 

The catch here is that to know who wins, we 

must compare the powers of the superheroes in 

the opposite categories, rather than the same 

categories. That is, attack values must always be 

compared with defense values and vice versa. 

At that, the following straightforward program 

can be implemented. 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int AB, DB, AS, DS; 

 

int main() { 

  cin >> AB >> DB >> AS >> DS; 

  if (AB > DS && DB > AS) { 

    cout << "Batman" << endl; 

  } else if (AS > DB && DS > AB) { 

    cout << "Superman" << endl; 

  } else { 

    cout << "Inconclusive" << endl; 

  } 

  return 0; 

} 

 

Problem J2: Electroshock Therapy 

Upon studying the diagram given in the description, we see that the wire segments can be counted in several groups. 

If for each building we are able to compute the length of horizontal segments on its center and top, as well as vertical 

segments on only its left side, then we can add it all up for each building. After that, we must account for the right 

side of the last building, which may be added in afterwards to get the answer. 

Inspecting the diagram, we see that the number of horizontal segments for each building i (for i = 1..N) is equal to Hi 

+ 1 (one for each floor, plus the roof). We also see that the number of vertical segments between any two adjacent 

buildings is equal to the maximum of their heights. So, for the left of the first building and the right of the last building, 

we can simply take their heights without taking the max. As such, we can loop through the buildings in O(N) time 

and sum up these values to get the total length of wire. 

Once last trick is noticing that we don’t even need to store the heights in an array. We just have to always keep track 

of the height of the previous building and use it to take the max the next time. This yields the following code. 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int N, prev, curr, ans = 0; 

 

int main() { 

  prev = 0; 

  cin >> N; 

  for (int i = 0; i < N; i++) { 

    cin >> curr; 

    ans += curr + max(prev, curr) + 1; 

    prev = curr; 

  } 

  cout << ans + curr << endl; 

  return 0; 

} 
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Problem J3: Red Sun Simulator 

In this problem, we would like to compute two values: the maximum and minimum number of minutes that Superman 

can be weakened for by the red sun simulator. These two values are always fixed, and knowing them will make the 

problem trivial to solve. The observation is that if can be weakened for both the min and max number of minutes, 

then he can also be weakened by any number of minutes between them. Assuming we know this range, then for every 

query Ti, we output “Y” if and only if Ti is between the min and max number of minutes, inclusive. 

We can initialize the min and max to 0, and then iterate over the N minutes while updating them appropriately. 

Namely, in each minute i, one of three possible situations can be true: 

1. Superman must be weakened (the min and max will each increase by 1) 

2. Superman may or may not be weakened (only the max will increase by 1) 

3. Superman cannot be weakened (nothing is changed) 

Since there are up to 5 intervals to consider for each minute, we must decide how to determine whether the weakening 

of Superman is mandatory (case 1) or possible (case 2). 

For Superman’s weakening to be mandatory, either the solar frequency of minute i is equal to 1 (and so every value 

of every interval is a multiple), or every interval for minute i solely consists of a single integer which is a multiple of 

the solar frequency (convince yourself that it is impossible for two consecutive integers to both be a multiple of 

another integer greater than 1). In this case, if even a single interval does not have Ai,j = Bi,j and Ai,j as a multiple of 

Fi, then we know that there is a chance for the RSS to fail at weakening Superman during minute i. Whether 

Superman’s weakening is mandatory can be checked using the AND operation on an initially true Boolean value as 

the intervals are being inputted (with no added time complexity). 

The harder part is checking whether it’s at least possible to weaken 

Superman during that minute. This is directly doable in linear time with 

respect to the total length of all intervals in minute i. Start with a 

variable “possible” set to true. Then for each interval j, we can check 

for multiples of F with the following for-loop in O(Bi,j – Ai,j) time. 

However, since A and B may be up to 1 billion, this method will 

clearly not run in time. We can try mitigating this slowness with 

tricks like looping starting from max(F, A), or even generating the 

multiples of F to see if each falls between A and B like the following:  

But ultimately, it will still be futile since for values like F = 2 on intervals [1, 109], we still have to loop 500 million 

times. The insight required to overcome this bottleneck is ultimately this: Suppose we want to get the smallest 

multiple of F greater than A. If we take floor(A / F) and multiply it by F again, then we are guaranteed to get a value 

is no greater than A (since floor(A / F) ≤ A / F) and a multiple of F (since we just multiplied it by F). Simply adding 

F to the result, we will get the first multiple of F greater than A. Then, we can just check if this is less than or equal 

to B. This is sufficient to solve the problem (since we know how to determine whether a multiple is in any interval 

in constant time), but if we want something more compact, then we can play around with the idea to finally deduce 

that each interval contains at least one multiple of F if and only if floor((A – 1) / F) = floor(B / F). 

Case 3 occurs when neither case 1 or case 2 is true, so we can simply do nothing after we determined so. Since every 

interval and question can be processed in constant time, the above algorithm will have a running time complexity of 

O((M1 + M2 + ... + MN) + Q). This solution is implemented as follows. 

for (int x = F; x <= B; x += F) 

  if (A <= x && x <= B) 

    possible = true; 

for (int x = A; x <= B; x++) 

  if (F % x == 0) 

    possible = true; 
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Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int N, Q, F, M, A, B, T; 

int min_win = 0, max_win = 0; 

 

int main() { 

  cin >> N >> Q; 

  for (int i = 0; i < N; i++) { 

    cin >> F >> M; 

    bool mandatory = true, possible = false; 

    for (int j = 0; j < M; j++) { 

      cin >> A >> B; 

      mandatory &= (F == 1 || (A == B && A % F == 0)); 

      possible |= ((A - 1) / F != B / F); 

    } 

    if (mandatory) { 

      min_win++; 

      max_win++; 

    } else if (possible) { 

      max_win++; 

    } 

  } 

  for (int i = 0; i < Q; i++) { 

    cin >> T; 

    if (min_win <= T && T <= max_win) { 

      cout << "Y" << endl; 

    } else { 

      cout << "N" << endl; 

    } 

  } 

  return 0; 

} 

 

Problem J4: LexCorp Infiltration 

If not for type-2 events requiring the grid to be constantly changed, this would be a relative standard flood-fill problem. 

As a first step, we can locate all of the control rooms, assigning them an index number from 1 to some integer K (note 

that 1 ≤ K ≤ RC/2), determining their sizes, and remembering which room each empty cell belongs to. This can be 

accomplished in O(RC) time using either depth first search (recursion) or breadth first search. We can iterate through 

the cells of the grid in any order, and when we come across an empty cell which hasn't been assigned to a room yet, 

we should perform a search to locate its entire room by recursively expanding to adjacent, unvisited empty cells on 

its top, right, bottom, and left sides (if they exist). An easy trick to remove the need for range checks is to initially 

pad an entire 0-based grid [0 ... R+1][0 ... C+1] with wall tiles before inputting the actual grid into 1-based indices. 

This effectively creates a “border” around the grid to prevent the search from going out of bounds. 

For each round of filling, we can just choose the index as the current number of rooms that have been found so far, 

starting with 0 for the first room. We will also keep track of the area for each room’s (incrementing it whenever we 

reach a cell). At the end of filling each room, we record the index of the room associated with its area. 
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Next, we should determine the initial ranks of the 

rooms. To do this efficiently, we must first sort the 

rooms in non-increasing order of size, which can be 

done in O(K log K) time. To do this in most 

languages, we can encapsulate the room data into 

pairs of (area, index) and define a comparator for 

the sorting function to compare by the sizes rather 

than the room indices. Finally, their ranks can be 

computed in O(K) time with a single sweep through 

them, ensuring that each room i gets the same rank 

as the previous room if they’re of equal area, or a 

rank of i otherwise. When there are only type-1 

events, nothing more is required – each event i can 

be processed by looking up the index of the room 

that cell (Ai, Bi) is part of, and then looking up that 

room’s rank. 

However, type-2 events make things trickier, as 

they can cause various rooms’ ranks to change. That 

being said, there's no need to re-compute the ranks 

of all rooms – it can be observed that, when a room 

is eliminated, the only effect is that the ranks of all 

rooms with strictly smaller sizes decrease by 1. 

Since there are O(K) such rooms each time, 

processing all N events has a time complexity of 

O(NK). Since N ≤ 3000 and K ≤ RC/2 (RC/2 is as 

large as 1000×1000/2 = 500,000), that yields 

roughly 500,000×3,000 = 1.5 billion steps. So, even 

with this observation, looping over all such rooms 

and updating their ranks is too slow for full marks.  

However, this logic can be rearranged as follows: a 

room’s rank is equal to its initial rank, minus the 

number of strictly larger rooms which have been 

eliminated so far. Instead of keeping the ranks of 

every room up to date, we can instead handle each 

event by looping over all previous type-2 events and 

counting the number of larger rooms which were 

targeted in them (taking care to not double-count 

rooms which were targeted multiple times). This 

yields a time complexity of O(RC + N2). Plugging 

in the upper bounds for R, C and N, we are in the 

ballpark of 1000×1000 + 30002, or roughly 10 

million steps, which is acceptable. This solution is 

presented on the right. 

Finally, it’s worth noting that this problem can be 

solved even more efficiently, in O(RC + N log K) 

time, by using an advanced data structure such as a 

binary indexed tree to speed up the step of counting 

previously-eliminated larger rooms from O(N) to 

O(log K) running time. 

Official Solution (C++) 

#include <algorithm> 
#include <cstring> 
#include <iostream> 
#include <vector> 
using namespace std; 
 
int R, C, N, T, A, B, area; 
char G[1005][1005]; 
bool vis[1005][1005]; 
int idx[1005][1005], rank[1000005], prev[3005]; 
vector<pair<int, int> > rooms; 
 
void dfs(int r, int c) { 
  if (vis[r][c] || G[r][c] == '#') return; 
  vis[r][c] = true; 
  idx[r][c] = rooms.size(); 
  area++; 
  dfs(r - 1, c); dfs(r + 1, c); 
  dfs(r, c - 1); dfs(r, c + 1); 
} 
 
int main() { 
  memset(G, '#', sizeof G); 
  cin >> R >> C >> N; 
  for (int i = 1; i <= R; i++) 
    for (int j = 1; j <= C; j++) { 
      cin >> G[i][j]; 
      vis[i][j] = false; 
      idx[i][j] = -1; 
    } 
  for (int i = 1; i <= R; i++) 
    for (int j = 1; j <= C; j++) 
      if (G[i][j] == '.' && !vis[i][j]) { 
        area = 0; 
        dfs(i, j); 
        rooms.push_back(make_pair(area, rooms.size())); 
      } 
  sort(rooms.rbegin(), rooms.rend()); 
  int curr = 0; 
  for (int i = 0; i < rooms.size(); i++) { 
    if (i == 0 || rooms[i].first != rooms[i - 1].first) 
      curr = i; 
    rank[rooms[i].second] = curr; 
  } 
  for (int i = 0; i < N; i++) { 
    prev[i] = -1; 
    cin >> T >> A >> B; 
    int id = idx[A][B]; 
    if (id == -1 || rank[id] == -1) { 
      cout << -1 << endl; 
      continue; 
    } 
    int ans = rank[id]; 
    for (int j = 0; j < i; j++) 
      if (prev[j] >= 0 && prev[j] < rank[id]) ans--; 
    cout << ans << endl; 
    if (T == 2) { 
      prev[i] = rank[id]; 
      rank[id] = -1; 
    } 
  } 
  return 0; 
} 
 

https://en.wikipedia.org/wiki/Fenwick_tree
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Problem S1: Energy Absorption 

For this problem, we want to keep Batman’s net damage positive, given that his initial damage is Qi (positive). So, 

we want to determine after how many punches this will happen, or if it will ever happen. The problem is, we have to 

be able to compute the answer quickly for many different initial damages. 

Start by observing that if Superman hasn’t yet stopped punching for some index and the next punch will do positive 

damage, then Superman is guaranteed to following through with this punch. This is because if Batman’s damage is 

currently positive, then positive damage will always make it more positive, and so there’s no reason for Superman to 

stop. This point is true regardless of the initial damage of Batman. That leads to the observation that only on particular 

indices will Superman ever stop, regardless of the initial damage of Batman. 

We must first find these “key indices” in the sequence of punches – all indices i such that the total damage dealt by 

the first i punches (D1 + D2 + ... + Di) is less than any earlier such total (less than the total damage dealt by the first j 

punches for any j < i). These key indices represent the punches which could possibly cause Batman's damage to 

become non-negative, meaning that Superman will always stop punching right before one of them (or after all N 

punches). In particular, if Batman starts with Qi damage, then we need to find the first key index k such that its total 

damage D1 + D2 + ... + Dk is strictly smaller than –Qi, and we'll know that Superman will perform precisely k – 1 

punches. If there's no such key index, then Superman will perform all N punches. 

Iterating over the key indices for each query to find the appropriate one results in an O(NM) algorithm, which is too 

slow for full marks. However, the key indices have cumulative damages which are monotonic (strictly decreasing), 

so we can instead use binary search to improve the time complexity to O(M log N). 

Official Solution (C++) 

#include <algorithm> 

#include <cstdio> 

#include <utility> 

#include <vector> 

using namespace std; 

 

int N, M, D, Q, prev = 0, curr = 0; 

vector<pair<int, int> > v; 

 

int main() { 

  scanf("%d%d", &N, &M); 

  for (int i = 0; i < N; i++) { 

    scanf("%d", &D); 

    curr -= D; 

    if (curr > prev) { 

      prev = curr; 

      v.push_back(make_pair(curr, i)); 

    } 

  } 

  v.push_back(make_pair(2000000001, N)); 

  sort(v.begin(), v.end()); 

  for (int i = 0; i < M; i++) { 

    scanf("%d", &Q); 

    printf("%d\n", lower_bound(v.begin(), v.end(), make_pair(Q + 1, 0))->second); 

  } 

  return 0; 

} 
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Problem S2: Detective Work 

The problem of trying to make all of the strings equal can be reduced to the problem of making each column of the 

row of strings equal. So every index (from 1 to M) can be handled independently, and we are simply trying to 

transform that index across all N strings to the same letter. For each index, we need to find two values – the minimum 

number of letter replacements in the column to make that index equal across all N strings, and the number of ways 

to do so. 

For a given index, we should consider each possible letter (from A to Z) to transform the entire column to. The cost 

to transform the column into a given letter is the number of strings which have a non-wildcard letter at the current 

index which is different than the chosen letter. The minimum cost for the index will then be the minimum of these 

costs over all 26 possible letters, while the count (error) will be the number of different letters from A to Z which 

have this minimal cost. 

Now that we know how to get the costs and errors for each column, getting an overall answer is easy. The total cost 

will be the sum of these costs, since to change all of the strings, we can simply change letters in all of the columns 

independently. From principles of basic combinatorics, we know that the total number of ways for M independent 

events to happen is just the product of the number of ways for each event to happen. So, to get the total error (number 

of possible words), we just multiply the number of possible ways for each index and modulo it by 1000. 

Official Solution (C++) 

#include <iostream> 

using namespace std; 

 

int N, M, cost = 0, error = 1; 

string S[1005]; 

 

int main() { 

  cin >> N >> M; 

  for (int i = 0; i < N; i++) 

    cin >> S[i]; 

  for (int j = 0; j < M; j++) { 

    int minfreq = 1000000000, total; 

    for (char c = 'A'; c <= 'Z'; c++) { 

      int freq = 0; 

      for (int i = 0; i < N; i++) { 

        if (S[i][j] != '?' && S[i][j] != c) 

          freq++; 

      } 

      if (freq < minfreq) { 

        minfreq = freq; 

        total = 1; 

      } else if (freq == minfreq) { 

        total++; 

      } 

    } 

    cost += minfreq; 

    error = (error * total) % 1000; 

  } 

  cout << cost << " " << error << endl; 

  return 0; 

} 
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Problem S3: Rescue Mission 

For starters, we should precompute the 2-dimensional prefix sums of all rows and columns. This precomputation can 

be done in O(NM) time, and will be helpful later for computing subsequent rescue zone sums in constant time. Let 

sum[i][j] denote the sum of the rectangle consisting of rows 1 to i (inclusive), and columns 1 to j (inclusive). Then, 

we can compute it using the recursive formula 

sum[i][j] = P[i][j] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] 

where sum[i][j] = 0 in the base cases of i = 0 or j = 0. The entire prefix sum array can be computed while P is being 

inputted, at no additional cost in time complexity. 

Now, because all values of P are non-negative, each rescue zone should extend as far up and left from its central cell 

as possible. We can call a rescue zone “complete” if it’s able to extend all the way to the top-most row (row 1) and 

to the left-most column (column 1), without intersecting with the other rescue zone. We can let C[i][j] equal the sum 

of the complete rescue zone with central point (i, j). Computing C[i][j] is easy now that we have the prefix sums – 

just subtract the sum of the rectangle with rows 1 to i – 1 and columns 1 to j – 1 from the total sum of the rectangle 

from the corner (1, 1) to cell (i, j). As a result, we will end up with the sum of the backwards “L”-shaped slice of the 

grid. That is, C[i][j] = sum[i][j] – sum[i – 1][j – 1]. 

Now, only the following cases are possible: either both rescue zones will 

be “complete”, or one branch of one of the rescue zones is forced to stop 

short in the horizontal or vertical direction by the other. 

In the first case, the central point of one rescue zone is strictly above 

and to the left of the central point of the other. The best possible answer 

for this case will be the maximum value of C[i1][j1] + C[i2][j2] across any pair of coordinates (i1, j1) and (i2, j2) that 

satisfy 1 ≤ i1 < i2 ≤ N and 1 ≤ j1 < j2 ≤ M. To actually compute this best answer, we can use dynamic programming as 

we iterate over all cells (i, j) from the top-left corner of the grid to the bottom-right corner. 

Let DP[i][j] store the maximum complete rescue zone whose central point is in the inclusive rectangle from (1, 1) to 

(i, j). Intuitively, we can see that DP[i][j] is equal to the maximum of three values: DP[i – 1][j], DP[i][j – 1], and 

C[i][j]. Finally, to get the max sum of any pair of complete, non-intersecting rescue zones, we can take the max of 

C[i][j] + DP[i – 1][j – 1] across all coordinates (i, j) in the grid. This part of the solution will take O(NM) time (and 

can in fact be fully computed as the grid is being inputted!). 

The second case is that only one of the rescue zones is complete, while the other one has to stop short in either the 

horizontal or vertical direction so that it doesn't intersect with the first zone. Without loss of generality, let's say that 

the incomplete rescue zone’s central point is to the right of the complete one’s (see the rightmost figure above). It 

could instead be below it (as in the middle figure), but we can repeat the following algorithm with the grid’s axes 

inverted to cover that case. Inverting the grid is as simple as treating row indices as column indices and vice versa. 

Now, suppose the complete zone has its central point at (i, j) and the incomplete zone has the central point (r, c) (with 

r ≤ i and c > j) such that it includes cells j + 1 to c in row r, and cells 1 to r in column c. If we iterate over all possible 

(i, j) cells from the bottom-right to the top-left while maintaining the sum of the best incomplete zone in each row r 

(which can be updated in constant time as we go through each cell (i, j)), then the sum of the best accompanying 

incomplete zone for the complete zone centred at (i, j) can also be looked up in constant time. As such, this part of 

the solution can also be implemented in O(NM) time. 

Taking the best answer of all of the cases will yield the following O(NM) solution. 

...S.B     .....S     ..S..B 

...S.B     .....S     ..S..B 

SSSS.B     SSSSSS     ..S..B 

.....B     ....B.     ..SBBB 

BBBBBB     BBBBB.     SSS... 

http://wcipeg.com/wiki/Prefix_sum_array_and_difference_array
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Official Solution (C++) 

#include <algorithm> 

#include <iostream> 

using namespace std; 

 

int N, M, P[2005][2005], ans = 0; 

int sum[2005][2005] = {0}, dp[2005][2005] = {0}, best[2][2005] = {0}; 

 

int main() { 

  cin >> N >> M; 

  for (int i = 1; i <= N; i++) { 

    for (int j = 1; j <= M; j++) { 

      cin >> P[i][j]; 

      sum[i][j] = P[i][j] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]; 

      int curr = sum[i][j] - sum[i - 1][j - 1]; 

      dp[i][j] = max(curr, max(dp[i - 1][j], dp[i][j - 1])); 

      ans = max(ans, curr + dp[i - 1][j - 1]); 

    } 

  } 

  for (int invert = 0; invert <= 1; invert++) { 

    int h1 = (invert ? M : N), h2 = (invert ? N : M); 

    int tmp[2005] = {0}; 

    for (int a = h1; a >= 1; a--) { 

      int curr = 0; 

      for (int b = 1; b <= h2; b++) { 

        int p = (invert ? P[b][a] : P[a][b]); 

        tmp[b] = p + max(tmp[b], curr); 

        curr += p; 

        best[invert][a] = max(best[invert][a], tmp[b]); 

      } 

    } 

  } 

  for (int i = 1; i <= N; i++) { 

    for (int j = 1; j <= M; j++) { 

      int curr = sum[i][j] - sum[i - 1][j - 1]; 

      if (i < N) ans = max(ans, curr + best[0][i + 1]); 

      if (j < M) ans = max(ans, curr + best[1][j + 1]); 

    } 

  } 

  cout << ans << endl; 

  return 0; 

} 
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Problem S4: Lex Luthor’s Landmines 

For starters, let's sort the landmines in non-decreasing order of position. This takes O(N log N) time. Our primary 

goal will be to compute the values ML[i] and MR[i] for each mine i – the minimum and maximum positions that will 

be engulfed in an explosion if mine i is set off. From here, one naïve thing to try would be a straightforward simulation 

using breadth-first search. To compute the ML and MR of each initial mine, we can add it to the queue. Processing 

each mine as we pop them from the queue, we can loop through all other mines to see if that mine is set off. The 

simulation for each mine will take O(N2). For N mines, that is O(N3) overall. To finally process each query position 

C, we can naively loop through all of the mines and count the number of mines that have ML and MR ranges including 

C. Since there are at M queries, the running time for this part is O(NM). This solution is given 15/40 of the points. 

We can try certain optimizations such as gradually expanding the explosion range for each initial mine. This will get 

each simulation from O(N2) to O(N), yielding O(N2) across all N mines. However, that is still too slow for N as large 

as 106. Furthermore, answering queries also happens to be a bottleneck, with M up to 3×106. We will need to speed 

up both sections to sub-quadratic running time to pass under the time limit. 

For a full solution, we can start by representing the mines as the nodes of a directed, unweighted graph. Let there be 

an edge from mine i to mine j if mine j's explosion would directly set off mine i (in other words, if P[j] – L[j] ≤ P[i] 

≤ P[j] + R[j]). The purpose of this graph is that ML[j] and MR[j] can be computed based on the ML and MR values 

of mines which have edges leading into mine j (for example, ML[j] is equal to the minimum of L[j] and the ML values 

of those mines). 

One issue with this graph is that it can have O(N2) edges. However, the observation can be made that keeping at most 

two incoming edges for each mine j will suffice – the edge leading from the mine whose position is in the interval 

[P[j] – L[j], P[j] + R[j]] which has the minimum L value, and similarly the one which has the maximum R value. 

These (at most) two mines are clearly at least as important as any other mines that mine j can directly set off. Both 

of the mines can be found in O(log N) time by using a segment tree to perform a range minimum/maximum query 

on the L/R values of the mines. 

We now have a graph with O(N) edges which represents the relationships between the mines’ ML and MR values, 

but it doesn't yet give us an appropriate order in which to compute these values based on one another, due to the fact 

that it can have cycles. If two mines are reachable from one another in this graph, they must have the same ML and 

MR values. As such, the next step is to locate all of the strongly connected components in the graph (in O(N) time 

using an algorithm such as Tarjan’s). Each strongly connected component can then be contracted to a single node, 

which stores the number of actual mines in the node as well as their minimum L value and maximum R value, and a 

new, directed acyclic graph can be created from these component nodes. In graph theory, this new graph is known as 

the condensation of the original, and happens to be a directed acyclic graph (DAG). 

We can now perform a topological sort on the nodes of this DAG, iterating over them in order and updating each 

node’s ML and MR values based on those of the nodes with edges leading to it. For each one, we don't need to bother 

looking up exactly which initial mines correspond to the component node – only how many there are that have this 

set of ML and MR values. This process takes O(N) time. 

Finally, we can perform a line sweep to get the requested answers. We'll need events for the civilians' positions, as 

well as for the start and end of each component node's final explosion range [ML, MR] (also storing the number of 

mines associated with this range). Upon sorting the events in O((N+M)×log(N+M)) time, we can iterate over them 

while maintaining the number of mines whose final explosion range affects the current position, and noting these 

counts each time a civilian position is reached so that they can later be outputted in the correct order. 

The official solution implementing this approach is as follows. 

http://wcipeg.com/wiki/Segment_tree
https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Edge_contraction#Vertex_identification
https://en.wikipedia.org/wiki/Directed_acyclic_graph


Woburn Challenge 2015-16: Round 3 (Solutions) 

Official Solution (C++) 

#include <algorithm> 

#include <cstdio> 

#include <queue> 

#include <set> 

#include <vector> 

using namespace std; 

 

const int MAXN = 1000005, SIZE = 2100000, INF = 1000000000; 

 

int components, comp_id[MAXN], timer = 0, lowlink[MAXN] = {0}; 

vector<bool> vis(MAXN, false); 

vector<int> adj[MAXN], stack; 

 

void tarjan_dfs(int u) { 

  lowlink[u] = timer++; 

  vis[u] = true; 

  stack.push_back(u); 

  bool is_component_root = true; 

  int v; 

  for (int j = 0; j < (int)adj[u].size(); j++) { 

    if (!vis[v = adj[u][j]]) tarjan_dfs(v); 

    if (lowlink[u] > lowlink[v]) { 

      lowlink[u] = lowlink[v]; 

      is_component_root = false; 

    } 

  } 

  if (!is_component_root) return; 

  do { 

    vis[v = stack.back()] = true; 

    stack.pop_back(); 

    lowlink[v] = INF; 

    comp_id[v] = components; 

  } while (u != v); 

  components++; 

} 

 

int N, M, C, x, l, r, segmax, ql, qh, qmin, qmax; 

vector<int> X, L, R, dag[MAXN]; 

vector<pair<int, pair<int, int> > > mines, events; 

int CS[MAXN], CL[MAXN], CR[MAXN], indegree[MAXN], ans[MAXN]; 

int min_val[SIZE], min_idx[SIZE], max_val[SIZE], max_idx[SIZE]; 

 

void query(int i, int lo, int hi) { 

  if (ql <= lo && hi <= qh) { 

    if (min_val[i] < L[qmin]) qmin = min_idx[i]; 

    if (max_val[i] > R[qmax]) qmax = max_idx[i]; 

    return; 

  } 

  int m = (lo + hi) / 2; 

  if (ql <= m) query(i * 2, lo, m); 

  if (qh > m) query(i * 2 + 1, m + 1, hi); 

} 

 

int main() { 

  scanf("%d%d", &N, &M); 

  for (int i = 0; i < N; i++) { 

    scanf("%d%d%d", &x, &l, &r); 

    mines.push_back(make_pair(x, make_pair(l, r))); 

  } 

  for (int i = 0; i < M; i++) { 

    scanf("%d", &C); 

    events.push_back(make_pair(C, make_pair(0, i))); 

  } 

  //sort mines 

  sort(mines.begin(), mines.end()); 

  for (int i = 0; i < N; i++) { 

    X.push_back(mines[i].first); 

    L.push_back(X[i] - mines[i].second.first); 

    R.push_back(X[i] + mines[i].second.second); 

  } 



Woburn Challenge 2015-16: Round 3 (Solutions) 

  //initialize segment tree 

  for (segmax = 1; segmax < N; segmax *= 2); 

  for (int i = 0; i < segmax; i++) { 

    int j = segmax + i; 

    min_idx[j] = max_idx[j] = i; 

    if (i < N) { 

      min_val[j] = L[i]; max_val[j] = R[i]; 

    } else { 

      min_val[j] = INF;  max_val[j] = -INF; 

    } 

  } 

  for (int i = segmax - 1; i > 0; i--) { 

    int l = i * 2, r = i * 2 + 1; 

    min_val[i] = min(min_val[l], min_val[r]); 

    max_val[i] = max(max_val[l], max_val[r]); 

    min_idx[i] = (min_val[i] == min_val[l]) ? min_idx[l] : min_idx[r]; 

    max_idx[i] = (max_val[i] == max_val[l]) ? max_idx[l] : max_idx[r]; 

  } 

  //construct graph by finding best pair of mines in range and constructing edges from them 

  for (int i = 0; i < N; i++) {  

    ql = lower_bound(X.begin(), X.end(), L[i]) - X.begin(); 

    qh = lower_bound(X.begin(), X.end(), R[i] + 1) - X.begin() - 1; 

    qmin = qmax = i; 

    query(1, 0, segmax - 1); 

    if (qmin != i) adj[qmin].push_back(i); 

    if (qmax != i) adj[qmax].push_back(i); 

  } 

  //find strongly connected components 

  for (int i = 0; i < N; i++) if (!vis[i]) tarjan_dfs(i); 

  //construct directed acyclic graph out of SCCs 

  set<pair<int, int> > edges; 

  for (int i = 0; i < N; i++) { 

    int u = comp_id[i]; 

    if (++CS[u] == 1) { 

      CL[u] = L[i]; CR[u] = R[i]; 

    } else { 

      CL[u] = min(CL[u], L[i]); CR[u] = max(CR[u], R[i]); 

    } 

    for (int j = 0; j < (int)adj[i].size(); j++) { 

      int v = comp_id[adj[i][j]]; 

      if (u != v && !edges.count(make_pair(u, v))) { 

        edges.insert(make_pair(u, v)); 

        dag[u].push_back(v); 

        indegree[v]++; 

      } 

    } 

  } 

  //topological sort nodes of the DAG 

  queue<int> q; 

  for (int i = 0; i < components; i++) if (indegree[i] == 0) q.push(i); 

  while (!q.empty()) { 

    int u = q.front(); q.pop(); 

    events.push_back(make_pair(CL[u], make_pair(-1, CS[u]))); 

    events.push_back(make_pair(CR[u], make_pair(1, -CS[u]))); 

    for (int j = 0; j < (int)dag[u].size(); j++) { 

      int v = dag[u][j]; 

      CL[v] = min(CL[v], CL[u]); 

      CR[v] = max(CR[v], CR[u]); 

      if (--indegree[v] == 0) q.push(v); 

    } 

  } 

  //line sweep 

  sort(events.begin(), events.end()); 

  int curr = 0; 

  for (int i = 0; i < (int)events.size(); i++) { 

    if (events[i].second.first == 0) 

      ans[events[i].second.second] = curr; 

    else 

      curr += events[i].second.second; 

  } 

  for (int i = 0; i < M; i++) printf("%d\n", ans[i]); 

  return 0; 

} 


